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1. INTRODUCTION

Today’s topic is about an alternative proof of Gromov’s Theorem. However, I must admit I'm
playing a little trick on you, because it’s impossible to cover the full proof of Gromov’s Theorem
in just a short time. The title is more of a hook to capture your interest. In fact, most time will
be used to prove Kleiner’s theorem, which is a key step in proving the whole Gromov’s theorem.

First, let me introduce some preliminaries and history.

Throughout this talk, we fix a group G that is finitely generated and a finite symmetric gener-
ating set S (that is, S is closed under inversion). For every z € G, the word length |z| is the

shortest length n of a word s, s5...s,, that expresses z.

Definition 1.1:

|z| := min{n € Ny| 351, 89, ..., 5, € S s.t.x = 5;85...5,, }-

And the growth of G can be seen as the growth of the cardinality of the ball B(r) := {z €
G| [z <r}

Definition 1.2: Growth: |B(r)

, where B(r) := {z € G| |z|| < r}.

Next, we can classify the growth type of a given group:

Definition 1.3: G has polynomial growth if there exist ¢ > 0,d € N, such that |B(r)| <

er? for all r.

In fact, there are a total of 3 cases here, the other two are exponential and intermediate, but in
this talk, we mainly focus on the case of polynomial growth. Here is a simple example:

Example: When G is abelian, then |B(r)| = prank(G)

The study of growth of groups is related to various topic such as Riemmannian geometry and
the amenability of groups.

As we have learned in group theory, a group is nilpotent if its lower central series terminates in

finitely many steps at the trivial subgroup. And we define virtually nilpotent here:

Definition 1.4: A group G is virtually nilpotent if there is a nilpotent subgroup H of G

with finite index.

In 1968, Wolf showed in [1] that if a group is virtually nilpotent, then it has polynomial growth.
And in 1981, Gromov proved the converse statement in [2], which is the title of this talk:

Gromov’s theorem on groups of polynomial growth.



Theorem 1.1: (Gromov’s Theorem, 1981) Every finitely generated group of polynomial

growth is virtually nilpotent.

Gromov’s proof uses a work about the solution to Hilbert’s fifth theorem and is quite non-

elementary.

In 2010, Klenier reproves the theorem in a more analytical way[3], using method from harmonic
analysis, which is much more elementary.

In the upcoming time, I will prove Kleiner’s theorem, which is also the main innovation in his

paper.

2. KLEINER’S THEOREM.

Also, we need to give some definitions first:

Definition 2.1: A function f : G — R is Lipschitz if:

sup |f(gs) — f(g)] < +o0,
geG,seS

and is harmonic if:

1

f(g):E

Zf(gs),Vg €eqG.

seS

And here is the Kleiner’s theorem:

Theorem 2.1: If | B(r)| is of polynomial growth. Then the vector space H of Lipschitz
harmonic functions on G is finite dimensional.

For simlicity, we will assume a slightly stronger condition than polynomial growth, namely
bounded doubling:

AC > 0,s.t. |B(2r)| < C|B(r)|,Vr >0
The entire proof will go in two steps.

Initially, we’ll state two important inequalities: the Poincaré inequality and the reverse one. The
proof of these inequalities involves a lot of techniques. So we’ll first apply these two inequalities

to establish the theorem, and subsequently, we’ll go back to prove these two inequalities.

And here’s the two inequality:



Lemma 2.1: (Poincaré inequality) For every function f : G — R, if f has mean 0 on
B(r), then its [2-norm on B(r) is bounded by the fluctuation on B(2r):

Y P |1;(2r)|_ 2w Y (fe) - Fw)

zeB(r) ( )| z,yeB(2r),z~y

Lemma 2.2: (Reverse Poincaré inequality) For every harmonic function f: G — R,
then its fluctuation on B(r) is bounded by the /2-norm on B(2r):

>, (@—fw)><I8l 5 Z A=

z,y€B(r),x~y IGB(2T

2.1. the proof of Kleiner’s theorem
Proof: First assume that dim(H Lip) > n, where n will be determined later. Denote by V
the n-dimensional subspace of HYP (V' C HYP dim(V) = n).

Let k be a natural number to be determined soon, and fix r for a moment.

Let A, be a maximal collection of disjoint balls of radius 7 with centers in B(kr), let B,
be the collection of balls with the same centers of the balls in 4, but of radius r. (B, :=
244 € 4,})

Let V. be the vector subspace of V' consisting of functions in V' that average on each ball
inB,.(V,:={f € VIVB € B,, f has mean 0 on B})

Note that the co-dimension of V. in V' is at most
|Blkr + 3)|
1B(3)l

where the constant C' depends only on G.

B,| < = 0(1) = C,

For every harmonic function f € V., we note that B(kr) C U5 B, and each point in
B(kr) is covered by 2B for at most |B(2r + %)|/|B(%)| = O(1) many B € B,.

Next, we apply the two inequalities.



Yo P@< ) Y )

zeB(kr) BeB, zeB

sty Y (fl@)—fw)?

BeB, z,yin2B,z~y
< > (f(z) = f(y))?

z,yeB(kr+2r),x~y

1 2

xzeB(2(k+2)r)

Now take k large enough, we can find a natural number d that will be determined later

such that forall f € V_,

3 ) < Y )

zeB(kr) z€B(3kr)

Next, consider the quadratic form @, defined on V' defined by Q, (4 :=>___ B(r) 2 (z).
The above formula implies that, for all f € V., we have:

3kor(f) < Q3kr(f)'

Since the kernels of @),’s form a descending chain of vector spaces, there exists ry such

that @, is positive-definite for all r > r,.

Now fix a basis { fi, ..., f,, } for V and assume that fitey = 0 and is 1-Lipschitz is f; is non-
constant. Then for all » > 7, we define:

Er = {(Clﬂ "‘7Cn) eR" | Qr(clfl +..t Cnfn) < 1}7
q(r) = vol(E,).
Note that ¢(r)/q(r") does not depend on the choice of the basis.

Since | B(r)| is at most polynomial in r, there exists d € N, such that:

Z fA(r) <rd Vi=1,..,n.

z€B(r)

By Cauchy-Schwarz inequality, we have:

Qulerfi+ o Henf)= Y. (afi+ .+, f) (@)

z€B(r)
<n ), (dfi(@)+ ..+l fi(z))
z€B(r)
< n?rd c?.
i=1,...,n

Therefore, in R™, we have:



Which implies that

where v,, is a constant.

The remaining part is just linear algebra. For every @),., we have a symmetric matrix:
M(Qr) = (Qr(fm fj))z j.

And we define the determinant of Q,. as det(Q,.) := det(M(Q,.)).

After linear transformation, we can assume that M (Q,.), M (Q5,,.) are of the form:

Al Bl (AS )
B%—' C11 ’ C’3 ’

Where A, A5 act on V,.. And we compute that:
oy _ det(Qy,)
Air det(Q3kr>
B det(A3) det(Cs)
det(A,) det(Cy)
= det(Az) det(Cy)”

Since 39Q, () < Qur(f), for all f € V,, we have Qg (f) < Qup (f) for all £ € V.
Thus, we have 374, < A, and C; < Cj, which implies that:

q3kr

Now we can choose n large enough such that 3¢("¢) > 274 hence we get:
q(kr) > 2™q(3kr)
> Zmndq(3mk,’.)

-n

> 2mndy . (n(3mkr)%)
mnd
> C'(n,d) - (2/V3)™",
which is a contradiction. O

2.2. Proof of the Poincaré inequality
Proof:

LHS = > (fl@) - fFw)?

21B(r)l , ZF
Then for all z € B(2r), fix a shortest path e = 2, 2y, ..., 2] = z from e to .
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Given z,y € B(r), let 2 = 271y € B(2r), then we have:

{1}
flx) = fly) = Z(f(xzz’fl) — f(zz)),

i—1
applying the Cauchy-Schwarz inequality, we have:

=l

(f(2) = F)? < 21 ) (flaziy) — flaz)”.
i=1

Summing over all z,y € B(r), we get:

=l

2|B(r)| - LHS < Yo Y (flazy) - fz)?

I,yeB(r),z::E_ly i=1

J2I
= > Hzll( > (f(iﬂzil)—f(:vzi))Q).
zeB(

z€B(2r) r),xz€B(r)
Fix 2 and i for a moment, we can find that z,;_;y, zz; € B(2r), and the directed edge
(xz;,_1,22;) # (&'2,_1,2 2;) if x # 2. Therefore, we have:

=]
S (flaz) —f@)’ < > (fl@) - f)*

z€B(r),xz€B(r) z,y€B(2r),z~y
Then we get:
2B(r)|-LHS < > o Y (f@) - fw) <[B@- 4 Y (fla)— f)*
zeB(2r) z,yeB(2r),z~y z,y€B(2r),z~y

d

2.3. Proof of the reverse Poincaré inequality
We first introduce some notations:

Definition 2.3.1: Given f : G —» R, s € 5, let

fs(l‘) = f(xs)’asf = fs _f

It is easy to check that:

Proposition 2.3.1:
L > g0:10,f =0if f is harmonic.
2. 3 o f@)0g(x) =3 _ 0,1 f(x)g(z) when f or g is finitely supported.

Now we can prove the reverse Poincaré inequality.



Proof: Fix a harmonic function f, let ¢ : G — [0, 1] be as follows:

Lzl <r
o) =<2 <z < 2r
0,2r < ||

Note that, for all s € S, we have:
0,(f?) = (0,1)9* + [(0,¢7)
D50° = (950) (20 + Dy90)

So we have:

(0,1)(05(£9%)) = (0,1)°@* + [,(0,1)(D5) (20 + B,0),

then
S0, +2£,(0.1)(0up)0 = ~2f2(0,0)°

0.1)%¢ fs(f5+f)(3s<P)2

\VJ
N[ = wlr—*

1
(0.0)0" = 5 (312 + 1*)(B,0)”.
Summing over all s € S'and all z € G, we get:

DD 0. 0,(F9%) =D > (0:10,1)(f0%)

seS zeG seS zeG
-y (Z 0,0, f) (f¢?)
z€G \ s€S
=0.
Which implies that:
YD O f@) 0@ <D (3f(s)? + f(2)?)(9,0(x))?
seS zeG seS zeG

And we have:

LHS>  » (f(&) = ()%

z,yeB(r),xz~y

RHS < 5| - — = Y @

r<||z\|<2r

which completes the proof.
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