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1. Introduction
Today’s topic is about an alternative proof of Gromov’s Theorem. However, I must admit I’m
playing a little trick on you, because it’s impossible to cover the full proof of Gromov’s Theorem
in just a short time. The title is more of a hook to capture your interest. In fact, most time will
be used to prove Kleiner’s theorem, which is a key step in proving the whole Gromov’s theorem.

First, let me introduce some preliminaries and history.

Throughout this talk, we fix a group 𝐺 that is finitely generated and a finite symmetric gener:
ating set 𝑆 (that is, S is closed under inversion). For every 𝑥 ∈ 𝐺, the word length ‖𝑥‖ is the
shortest length 𝑛 of a word 𝑠1𝑠2…𝑠𝑛 that expresses 𝑥.

Definition 1.1 :

‖𝑥‖ ≔ min{𝑛 ∈ ℕ0| ∃𝑠1, 𝑠2, …, 𝑠𝑛 ∈ 𝑆 𝑠.𝑡.𝑥 = 𝑠1𝑠2…𝑠𝑛}.

And the growth of 𝐺 can be seen as the growth of the cardinality of the ball 𝐵(𝑟) ≔ {𝑥 ∈
𝐺| ‖𝑥‖ ≤ 𝑟}

Definition 1.2 :  Growth: |𝐵(𝑟)|, where 𝐵(𝑟) ≔ {𝑥 ∈ 𝐺| ‖𝑥‖ ≤ 𝑟}.

Next, we can classify the growth type of a given group:

Definition 1.3 :  𝐺 has polynomial growth if there exist 𝑐 > 0, 𝑑 ∈ ℕ0 such that |𝐵(𝑟)| ≤
𝑐𝑟𝑑 for all 𝑟.

In fact, there are a total of 3 cases here, the other two are exponential and intermediate, but in
this talk, we mainly focus on the case of polynomial growth. Here is a simple example:

Example :  When 𝐺 is abelian, then |𝐵(𝑟)| = 𝑟rank(𝐺).

The study of growth of groups is related to various topic such as Riemmannian geometry and
the amenability of groups.

As we have learned in group theory, a group is nilpotent if its lower central series terminates in
finitely many steps at the trivial subgroup. And we define virtually nilpotent here:

Definition 1.4 :  A group 𝐺 is virtually nilpotent if there is a nilpotent subgroup 𝐻  of 𝐺
with finite index.

In 1968, Wolf showed in [1] that if a group is virtually nilpotent, then it has polynomial growth.
And in 1981, Gromov proved the converse statement in [2], which is the title of this talk:
Gromov’s theorem on groups of polynomial growth.
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Theorem 1.1 : (Gromov’s Theorem, 1981) Every finitely generated group of polynomial
growth is virtually nilpotent.

Gromov’s proof uses a work about the solution to Hilbert’s fifth theorem and is quite non:
elementary.

In 2010, Klenier reproves the theorem in a more analytical way[3], using method from harmonic
analysis, which is much more elementary.

In the upcoming time, I will prove Kleiner’s theorem, which is also the main innovation in his
paper.

2. Kleiner’s Theorem.
Also, we need to give some definitions first:

Definition 2.1 :  A function 𝑓 : 𝐺 → ℝ is Lipschitz if:

sup
𝑔∈𝐺,𝑠∈𝑆

|𝑓(𝑔𝑠) − 𝑓(𝑔)| < +∞,

and is harmonic if:

𝑓(𝑔) = 1
|𝑆|

∑
𝑠∈𝑆

𝑓(𝑔𝑠), ∀𝑔 ∈ 𝐺.

And here is the Kleiner’s theorem:

Theorem 2.1 :  If |𝐵(𝑟)| is of polynomial growth. Then the vector space 𝐻Lip of Lipschitz
harmonic functions on G is finite dimensional.

For simlicity, we will assume a slightly stronger condition than polynomial growth, namely
bounded doubling:

∃𝐶 > 0, 𝑠.𝑡. |𝐵(2𝑟)| ≤ 𝐶|𝐵(𝑟)|, ∀𝑟 > 0

The entire proof will go in two steps.

Initially, we’ll state two important inequalities: the Poincaré inequality and the reverse one. The
proof of these inequalities involves a lot of techniques. So we’ll first apply these two inequalities
to establish the theorem, and subsequently, we’ll go back to prove these two inequalities.

And here’s the two inequality:
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Lemma 2.1 :  (Poincaré inequality) For every function 𝑓 : 𝐺 → ℝ, if 𝑓  has mean 0 on
𝐵(𝑟), then its 𝑙2:norm on 𝐵(𝑟) is bounded by the fluctuation on 𝐵(2𝑟):

∑
𝑥∈𝐵(𝑟)

𝑓2(𝑥) ≤ |𝐵(2𝑟)|
|𝐵(𝑟)|

⋅ 2𝑟2 ∑
𝑥,𝑦∈𝐵(2𝑟),𝑥∼𝑦

(𝑓(𝑥) − 𝑓(𝑦))2

Lemma 2.2 :  (Reverse Poincaré inequality) For every harmonic function 𝑓 : 𝐺 → ℝ,
then its fluctuation on 𝐵(𝑟) is bounded by the 𝑙2:norm on 𝐵(2𝑟):

∑
𝑥,𝑦∈𝐵(𝑟),𝑥∼𝑦

(𝑓(𝑥) − 𝑓(𝑦))2 ≤ |𝑆| ⋅ 4
𝑟2 ∑

𝑥∈𝐵(2𝑟)
𝑓2(𝑥)

2.1. the proof of Kleiner’s theorem
Proof :  First assume that dim(𝐻Lip) ≥ 𝑛, where 𝑛 will be determined later. Denote by 𝑉
the 𝑛:dimensional subspace of 𝐻Lip (𝑉 ⊆ 𝐻Lip, dim(𝑉 ) = 𝑛).

Let 𝑘 be a natural number to be determined soon, and fix 𝑟 for a moment.

Let 𝒜𝑟 be a maximal collection of disjoint balls of radius 𝑟
2  with centers in 𝐵(𝑘𝑟), let ℬ𝑟

be the collection of balls with the same centers of the balls in 𝒜𝑟, but of radius 𝑟. (ℬ𝑟 ≔
{2𝐴|𝐴 ∈ 𝒜𝑟})

Let 𝑉𝑟 be the vector subspace of 𝑉  consisting of functions in 𝑉  that average on each ball
in ℬ𝑟. (𝑉𝑟 ≔ {𝑓 ∈ 𝑉 |∀𝐵 ∈ ℬ𝑟, 𝑓 has mean 0 on 𝐵})

Note that the co:dimension of 𝑉𝑟 in 𝑉  is at most

|ℬ𝑟| ≤
|𝐵(𝑘𝑟 + 𝑟

2)|
|𝐵(𝑟

2)|
= 𝑂(1) ≕ 𝐶,

where the constant 𝐶 depends only on 𝐺.

For every harmonic function 𝑓 ∈ 𝑉𝑟, we note that 𝐵(𝑘𝑟) ⊆ ∪𝐵∈ℬ𝑟
𝐵, and each point in

𝐵(𝑘𝑟) is covered by 2𝐵 for at most |𝐵(2𝑟 + 𝑟
2)|/|𝐵(𝑟

2)| = 𝑂(1) many 𝐵 ∈ ℬ𝑟.

Next, we apply the two inequalities.
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∑
𝑥∈𝐵(𝑘𝑟)

𝑓2(𝑥) ≤ ∑
𝐵∈ℬ𝑟

∑
𝑥∈𝐵

𝑓2(𝑥)

≲ 𝑟2 ∑
𝐵∈ℬ𝑟

∑
𝑥,𝑦𝑖𝑛2𝐵,𝑥∼𝑦

(𝑓(𝑥) − 𝑓(𝑦))2

≲ 𝑟2 ∑
𝑥,𝑦∈𝐵(𝑘𝑟+2𝑟),𝑥∼𝑦

(𝑓(𝑥) − 𝑓(𝑦))2

≲ 1
(𝑘 + 2)2 ∑

𝑥∈𝐵(2(𝑘+2)𝑟)
𝑓2(𝑥)

Now take 𝑘 large enough, we can find a natural number 𝑑 that will be determined later
such that for all 𝑓 ∈ 𝑉𝑟,

3𝑑 ∑
𝑥∈𝐵(𝑘𝑟)

𝑓2(𝑥) ≤ ∑
𝑥∈𝐵(3𝑘𝑟)

𝑓2(𝑥)

Next, consider the quadratic form 𝑄𝑟 defined on 𝑉  defined by 𝑄𝑟(𝑓) ≔ ∑𝑥∈𝐵(𝑟) 𝑓2(𝑥).
The above formula implies that, for all 𝑓 ∈ 𝑉𝑟, we have:

3𝑑𝑄𝑘𝑟(𝑓) ≤ 𝑄3𝑘𝑟(𝑓).

Since the kernels of 𝑄𝑟’s form a descending chain of vector spaces, there exists 𝑟0 such
that 𝑄𝑟 is positive:definite for all 𝑟 ≥ 𝑟0.

Now fix a basis {𝑓1, …, 𝑓𝑛} for 𝑉  and assume that 𝑓𝑖(𝑒) = 0 and is 1:Lipschitz is 𝑓𝑖 is non:
constant. Then for all 𝑟 ≥ 𝑟0, we define:

𝐸𝑟 ≔ {(𝑐1, …, 𝑐𝑛) ∈ ℝ𝑛 | 𝑄𝑟(𝑐1𝑓1 + … + 𝑐𝑛𝑓𝑛) ≤ 1},

𝑞(𝑟) = vol(𝐸𝑟).

Note that 𝑞(𝑟)/𝑞(𝑟′) does not depend on the choice of the basis.

Since |𝐵(𝑟)| is at most polynomial in 𝑟, there exists 𝑑 ∈ ℕ, such that:

∑
𝑥∈𝐵(𝑟)

𝑓2
𝑖 (𝑥) ≤ 𝑟𝑑, ∀𝑖 = 1, …, 𝑛.

By Cauchy:Schwarz inequality, we have:

𝑄𝑟(𝑐1𝑓1 + … + 𝑐𝑛𝑓𝑛) = ∑
𝑥∈𝐵(𝑟)

(𝑐1𝑓1 + … + 𝑐𝑛𝑓𝑛)2(𝑥)

≤ 𝑛 ∑
𝑥∈𝐵(𝑟)

(𝑐2
1𝑓2

1 (𝑥) + … + 𝑐2
𝑛𝑓2

𝑛(𝑥))

≤ 𝑛2𝑟𝑑 ∑
𝑖=1,…,𝑛

𝑐2
𝑖 .

Therefore, in ℝ𝑛, we have:

𝐵(0, 1/𝑛𝑟𝑑
2 ) ⊆ 𝐸𝑟.
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Which implies that

𝑞(𝑟) ≥ 𝑣𝑛(𝑛𝑟𝑑
2 )

−𝑛
,

where 𝑣𝑛 is a constant.

The remaining part is just linear algebra. For every 𝑄𝑟, we have a symmetric matrix:

𝑀(𝑄𝑟) = (𝑄𝑟(𝑓𝑖, 𝑓𝑗))𝑖,𝑗
.

And we define the determinant of 𝑄𝑟 as det(𝑄𝑟) ≔ det(𝑀(𝑄𝑟)).

After linear transformation, we can assume that 𝑀(𝑄𝑘𝑟), 𝑀(𝑄3𝑘𝑟) are of the form:

(𝐴1
𝐵𝑇

1

𝐵1
𝐶1

), (𝐴3
𝐶3

),

Where 𝐴1, 𝐴3 act on 𝑉𝑟. And we compute that:

𝑞3𝑘𝑟
𝑞𝑘𝑟

= det(𝑄𝑘𝑟)
det(𝑄3𝑘𝑟)

=
det(𝐴1) det(𝐶1 − 𝐵𝑇

1 𝐴−1
1 𝐵1)

det(𝐴3) det(𝐶3)

≤ det(𝐴1) det(𝐶1)
det(𝐴3) det(𝐶3)

.

Since 3𝑑𝑄𝑘𝑟(𝑓) ≤ 𝑄3𝑘𝑟(𝑓), for all 𝑓 ∈ 𝑉𝑟, we have 𝑄𝑘𝑟(𝑓) ≤ 𝑄3𝑘𝑟(𝑓) for all 𝑓 ∈ 𝑉 .
Thus, we have 3𝑑𝐴1 ⪯ 𝐴3 and 𝐶1 ⪯ 𝐶3, which implies that:

𝑞𝑘𝑟
𝑞3𝑘𝑟

≥ (3𝑑)dim(𝑉𝑟) ≥ 3𝑑(𝑛−𝑐).

Now we can choose 𝑛 large enough such that 3𝑑(𝑛−𝑐) ≥ 2𝑛𝑑, hence we get:

𝑞(𝑘𝑟) ≥ 2𝑛𝑑𝑞(3𝑘𝑟)

≥ 2𝑚𝑛𝑑𝑞(3𝑚𝑘𝑟)

≥ 2𝑚𝑛𝑑𝑣𝑛 ⋅ (𝑛(3𝑚𝑘𝑟)
𝑑
2 )

−𝑛

≥ 𝐶′(𝑛, 𝑑) ⋅ (2/
√

3)
𝑚𝑛𝑑

,

which is a contradiction. □

2.2. Proof of the Poincaré inequality
Proof :

LHS = 1
2|𝐵(𝑟)|

∑
𝑥,𝑦∈𝐵(𝑟)

(𝑓(𝑥) − 𝑓(𝑦))2.

Then for all 𝑧 ∈ 𝐵(2𝑟), fix a shortest path 𝑒 = 𝑧0, 𝑧1, …, 𝑧‖𝑧‖ = 𝑧 from 𝑒 to 𝑧.
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Given 𝑥, 𝑦 ∈ 𝐵(𝑟), let 𝑧 = 𝑥−1𝑦 ∈ 𝐵(2𝑟), then we have:

𝑓(𝑥) − 𝑓(𝑦) = ∑
{‖𝑧‖}

𝑖=1
(𝑓(𝑥𝑧𝑖−1) − 𝑓(𝑥𝑧𝑖)),

applying the Cauchy:Schwarz inequality, we have:

(𝑓(𝑥) − 𝑓(𝑦))2 ≤ ‖𝑧‖ ∑
‖𝑧‖

𝑖=1
(𝑓(𝑥𝑧𝑖−1) − 𝑓(𝑥𝑧𝑖))

2.

Summing over all 𝑥, 𝑦 ∈ 𝐵(𝑟), we get:

2|𝐵(𝑟)| ⋅ LHS ≤ ∑
𝑥,𝑦∈𝐵(𝑟),𝑧=𝑥−1𝑦

‖𝑧‖ ∑
‖𝑧‖

𝑖=1
(𝑓(𝑥𝑧𝑖−1) − 𝑓(𝑥𝑧𝑖))

2

= ∑
𝑧∈𝐵(2𝑟)

‖𝑧‖
(
(( ∑

‖𝑧‖

𝑥∈𝐵(𝑟),𝑥𝑧∈𝐵(𝑟)
(𝑓(𝑥𝑧𝑖−1) − 𝑓(𝑥𝑧𝑖))

2

)
)).

Fix 𝑧 and 𝑖 for a moment, we can find that 𝑥𝑧(𝑖−1), 𝑥𝑧𝑖 ∈ 𝐵(2𝑟), and the directed edge
(𝑥𝑧𝑖−1, 𝑥𝑧𝑖) ≠ (𝑥′𝑧𝑖−1, 𝑥′𝑧𝑖) if 𝑥 ≠ 𝑥′. Therefore, we have:

∑
‖𝑧‖

𝑥∈𝐵(𝑟),𝑥𝑧∈𝐵(𝑟)
(𝑓(𝑥𝑧𝑖−1) − 𝑓(𝑥𝑧𝑖))

2 ≤ ∑
𝑥,𝑦∈𝐵(2𝑟),𝑥∼𝑦

(𝑓(𝑥) − 𝑓(𝑦))2.

Then we get:

2|𝐵(𝑟)| ⋅ LHS ≤ ∑
𝑧∈𝐵(2𝑟)

‖𝑧‖2 ∑
𝑥,𝑦∈𝐵(2𝑟),𝑥∼𝑦

(𝑓(𝑥) − 𝑓(𝑦))2 ≤ |𝐵(2𝑟)| ⋅ 4𝑟2 ∑
𝑥,𝑦∈𝐵(2𝑟),𝑥∼𝑦

(𝑓(𝑥) − 𝑓(𝑦))2.

□

2.3. Proof of the reverse Poincaré inequality
We first introduce some notations:

Definition 2.3.1 :  Given 𝑓 : 𝐺 → ℝ, 𝑠 ∈ 𝑆, let

𝑓𝑠(𝑥) ≔ 𝑓(𝑥𝑠), 𝜕𝑠𝑓 ≔ 𝑓𝑠 − 𝑓

It is easy to check that:

Proposition 2.3.1 :
1. ∑𝑠∈𝑆 𝜕𝑠−1𝜕𝑠𝑓 = 0 if 𝑓  is harmonic.
2. ∑𝑥∈𝐺 𝑓(𝑥)𝜕𝑠𝑔(𝑥) = ∑𝑥∈𝐺 𝜕𝑠−1𝑓(𝑥)𝑔(𝑥) when 𝑓  or 𝑔 is finitely supported.

Now we can prove the reverse Poincaré inequality.
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Proof :  Fix a harmonic function 𝑓 , let 𝜑 : 𝐺 → [0, 1] be as follows:

𝜑(𝑥) =

{{
{
{{1, ‖𝑥‖ ≤ 𝑟

2 − ‖𝑥‖
𝑟 , 𝑟 < ‖𝑥‖ < 2𝑟

0, 2𝑟 ≤ ‖𝑥‖
.

Note that, for all 𝑠 ∈ 𝑆, we have:

𝜕𝑠(𝑓𝜑2) = (𝜕𝑠𝑓)𝜑2 + 𝑓𝑠(𝜕𝑠𝜑2)

𝜕𝑠𝜑2 = (𝜕𝑠𝜑)(2𝜑 + 𝜕𝑠𝜑)

So we have:

(𝜕𝑠𝑓)(𝜕𝑠(𝑓𝜑2)) = (𝜕𝑠𝑓)2𝜑2 + 𝑓𝑠(𝜕𝑠𝑓)(𝜕𝑠𝜑)(2𝜑 + 𝜕𝑠𝜑),

then

1
2
(𝜕𝑠𝑓)2𝜑2 + 2𝑓𝑠(𝜕𝑠𝑓)(𝜕𝑠𝜑)𝜑 ≥ −2𝑓2

𝑠 (𝜕𝑠𝜑)2

≥ 1
2
(𝜕𝑠𝑓)2𝜑2 − 𝑓𝑠(𝑓𝑠+𝑓)(𝜕𝑠𝜑)2

≥ 1
2
(𝜕𝑠𝑓)2𝜑2 − 1

2
(3𝑓2

𝑠 + 𝑓2)(𝜕𝑠𝜑)2.

Summing over all 𝑠 ∈ 𝑆 and all 𝑥 ∈ 𝐺, we get:

∑
𝑠∈𝑆

∑
𝑥∈𝐺

𝜕𝑠𝑓 ⋅ 𝜕𝑠(𝑓𝜑2) = ∑
𝑠∈𝑆

∑
𝑥∈𝐺

(𝜕𝑠−1𝜕𝑠𝑓)(𝑓𝜑2)

= ∑
𝑥∈𝐺

(∑
𝑠∈𝑆

𝜕𝑠−1𝜕𝑠𝑓)(𝑓𝜑2)

= 0.

Which implies that:

∑
𝑠∈𝑆

∑
𝑥∈𝐺

(𝜕𝑠𝑓(𝑥))2𝜑(𝑥)2 ≤ ∑
𝑠∈𝑆

∑
𝑥∈𝐺

(3𝑓(𝑥𝑠)2 + 𝑓(𝑥)2)(𝜕𝑠𝜑(𝑥))2

And we have:

LHS ≥ ∑
𝑥,𝑦∈𝐵(𝑟),𝑥∼𝑦

(𝑓(𝑥) − 𝑓(𝑦))2,

RHS ≤ |𝑆| ⋅ 4
𝑟2 ∑

𝑟≤‖𝑥‖≤2𝑟
𝑓2(𝑥),

which completes the proof.

□
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