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1. Introduction
One of the most powerful concepts in modern mathematics is the notion of a limit. If we want to study
a large sequence of objects, we can often learn a lot by understanding what happens when we zoom
out and look at the big picture. When it comes to random graphs, the situation is quite similar, i.e.,
we can learn a lot by understanding the limit of a sequence of random graphs. In this article, I will
survey a seminal paper by Benjamini and Schramm[1], which introduced the Benjamini–Schramm
convergence (or local convergence) of random graphs.

We organize the paper as follows:
In Section 2, I will introduce the notion of the Benjamini–Schramm limits of (maybe random) graphs,
and state the main theorem of the paper, which says that such limit graphs are almost surely recurrent.
(To be honest, I never thought that we can have such a strong result about the limit of random graphs!
And this is the reason why I chose this topic). Furthermore, I will prove prove some nontrivial prop-
erties and give some examples to illustrate the concept of Benjamini–Schramm convergence since it
may not be so easy to understand at first glance.
In Section 3, I will give the detailed proof of the main theorem, which is the most difficult and technical
part in this paper. I divided the proof into three parts: the circle packing theory part, the case reduced
to triangulation part, and the proof of an important lemma (Lemma 3.2.2). We can see from this section
that how the techniques of circle packing and random walks will be used, which really impressed me
when I first read the proof.
In Section 4, I will give some remarks on the proof (for example, how its relevant to the topics we
have learned at courses), and try to offer some ideas and intuition behind the difficult techniques in
the proof.
In Section 5, I will summarize the main results and discuss some further topics and future directions.

2. Benjamini–Schramm limits of graphs
2.1. Space of rooted graphs
However, the general idea of limits of graphs is not so easy to define since there are so much informa-
tion in a graph. In order to keep track of the local structure of a graph, we need to define a notion of
convergence that captures the local structure of a graph, i.e., a root and a rooted graph.

Definition 1 :  Let 𝐺 be a graph and 𝑜 ∈ 𝑉 (𝐺).
1. A rooted graph is a pair (𝐺, 𝑜), the vertex 𝑜 is called the root of the rooted graph (𝐺, 𝑜).
2. Two rooted graphs are isomorphic if there is an isomorphism between them that maps the

root to the root.

In this article, we will only consider locally finite connected graphs with countable vertices. And we
have the following spaces with an appropriate metric.
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Definition 2 :
1. Let 𝒢• be the space of isomorphism classes of locally finite connected rooted graphs.
2. Given a rooted graph (𝐺, 𝑜) ∈ 𝒢•, the finite graph 𝐵𝐺(𝑜, 𝑅) is defined as the subgraph of 𝐺

induced by the set of vertices at distance at most 𝑅 from 𝑜.
3. We can define a metric on 𝒢• to capture the local structure of a rooted graph. For any two

rooted graphs (𝐺, 𝑜), (𝐺′, 𝑜′) ∈ 𝒢•, we define the local distance (or Benjamini–Schramm dis-
tance) between them as:

𝑑𝐵𝑆((𝐺, 𝑜), (𝐺′, 𝑜′)) ≔ 2−𝑅,

where 𝑅 is the largest integer such that 𝐵𝐺(𝑜, 𝑅) is isomorphic to 𝐵𝐺′(𝑜′, 𝑅).

And we will see that 𝒢• together with the Benjamini–Schramm distance has some nice properties.

Proposition 1 :  𝑑𝐵𝑆  is a metric on 𝒢•.

The proof of this proposition needs Kőnig’s infinity lemma and is not so trivial, but it is not much
relevant to our main theorem. Due to the length limitaion, we will not give the proof here.
A first consequence of the metric properties is that 𝒢• is actually a Polish space.

Theorem 2.1.1 :  𝒢• is a Polish space, i.e., it is a separable and complete metric space together
with the metric 𝑑𝐵𝑆 .

Proof :  The separability is easy to verify, we only prove that 𝒢• is complete. Let {(𝐺𝑛, 𝑜𝑛)}∞
𝑛=1 ⊆

𝒢• be a Cauchy sequence. For each 𝑟 ∈ ℕ0, there exists 𝑛𝑟 ∈ ℕ such that 𝐵𝐺𝑛
(𝑜𝑛, 𝑟) ≅

𝐵𝐺𝑛𝑟
(𝑜𝑛𝑟

, 𝑟), ∀𝑛 ≥ 𝑛𝑟. Note that the sequence 𝑛𝑟 can be chosen to be strictly increasing with
respect to 𝑟, and we can define a rooted graph (𝐺, 𝑜) as follows: for simplicity, we denote 
𝐵𝐺𝑛𝑟

(𝑜𝑛𝑟
, 𝑟) by (𝐻𝑟, 𝑣𝑟) for all 𝑟 ∈ ℕ0. Then by the monotonicity of 𝑛𝑟, we have:

𝐵𝐻𝑠
(𝑣𝑠, 𝑟) ≅ 𝐵𝐻𝑟

(𝑣𝑟, 𝑟), ∀𝑠 ≥ 𝑟.

Thus, these graphs are compatible as rooted graphs, i.e., for 𝑠 ≥ 𝑟, we can assume that they have
the same set of vertices and edges when restricted to 𝑟-ball. Let (𝐺, 𝑜) ∈ 𝒢• be the graph with 
𝑉 (𝐺) = ∪ 𝑉 (𝐻𝑟) and 𝐸(𝐺) = ∪ 𝐸(𝐻𝑟), and 𝑜 be the vertex 𝑜0 ∈ 𝑉 (𝐻0). Then we have:

𝐵𝐺(𝑜, 𝑟) ≅ 𝐵𝐻𝑟
(𝑣𝑟, 𝑟) ≅ 𝐵𝐺𝑛𝑟

(𝑜𝑛𝑟
, 𝑟) ≅ 𝐵𝐺𝑛

(𝑜𝑛, 𝑟), ∀𝑛 ≥ 𝑛𝑟,

which implies that 𝑑𝐵𝑆((𝐺, 𝑜), (𝐺𝑛, 𝑜𝑛)) ≤ 2−𝑟, ∀𝑛 ≥ 𝑛𝑟, and this completes the proof. □

2.2. Benjamini–Schramm convergence
Since 𝒢• is a Polish space, with the help of the Prokhorov’s theorem, we can talk about convergence
in distribution of random variables {𝑋𝑛}∞

𝑛=1 taking values in 𝒢•.
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Definition 3 :  Given a sequence of random variables {𝑋𝑛}∞
𝑛=1 taking values in 𝒢•, we say that

{𝑋𝑛} converges in distribution to a random variable 𝑋, and denote it by 𝑋𝑛 ⟶
𝑑

𝑋, if for every
bounded function 𝑓 : 𝒢• → ℝ, we have that 𝔼[𝑓(𝑋𝑛)] → 𝔼[𝑓(𝑋)] as 𝑛 → ∞.

In the following, we will focus on the situation where each 𝑋𝑛 is a finite random rooted random graph
(𝐺𝑛, 𝑜𝑛) such that given 𝐺𝑛, the root is chosen uniformly at random from 𝑉 (𝐺𝑛). We will see this
setting is quite natural and justifies the definition of the Benjamini–Schramm convergence.

Definition 4 :  Let {𝐺𝑛}∞
𝑛=1 be a sequence of (possibly random) finite graphs. We say that 

𝐺𝑛 converges in the Benjamini–Schramm sense (or converges locally) to a random rooted graph 
(𝐺, 𝑜) ∈ 𝒢•, and denote it by 𝐺𝑛 ⟶

𝐵𝑆
(𝐺, 𝑜), if for every 𝑟 ∈ ℕ,

𝐵𝐺𝑛
(𝑜𝑛, 𝑟) ⟶

𝑑
𝐵𝐺(𝑜, 𝑟),

where 𝑜𝑛 is a uniformly random vertex in 𝑉 (𝐺𝑛).
We say that (𝐺, 𝑜) is the Benjamini–Schramm limit (or local limit) of the sequence {𝐺𝑛}∞

𝑛=1.

Remark :
1. Note that this is equivalent to say, for every 𝑟 ∈ ℕ0 and every finite rooted graph (𝐻, 𝑣) ∈ 𝒢•,

we have:

ℙ[𝐵𝐺𝑛
(𝑜𝑛, 𝑟) ≅ 𝐵𝐻(𝑣, 𝑟)] → ℙ[𝐵𝐺(𝑜, 𝑟) ≅ 𝐵𝐻(𝑣, 𝑟)], as 𝑛 → ∞.

2. Roughly speaking, when taking Benjamini–Schramm convergence, we are looking at the local
structure of the graph, we choose the 𝑟-balls at random for each 𝐺𝑛 and asking what will them
eventually look like.

3. We clarify that whether 𝐺𝑛 is deterministic or random does not matter, as long as the root is chosen
uniformly at random from 𝑉 (𝐺𝑛).

2.3. Some Examples
Let’s consider some simple examples to illustrate the concept of Benjamini–Schramm convergence.
Since the purpose of this subsection is to offer some intuition, we will not give the detailed proof here
and only provide some ideas.

Example 1 :  (Convergence of cycles)

Let {𝐶𝑛}∞
𝑛=3 be a sequence of cycles with 𝑛 vertices. Then we have 𝐶𝑛 ⟶

𝐵𝑆
(ℤ, 𝑜), where ℤ is

the set of integers and 𝑜 is the vertex 0.

Example 2 :  (Convergence of grids)

Let {𝐺𝑛}∞
𝑛=1 be a sequence of 𝑛 × 𝑛-grids with 𝑛2 vertices. Then we have 𝐺𝑛 ⟶

𝐵𝑆
(ℤ2, 𝑜), where

𝑜 is the vertex (0, 0).

Note that in both examples above, the roots of the limit do not matter, since we can choose any other
vertices as the roots and we get the same elemen in 𝒢• up to isomophism.

We now consider an example which is not so trivial.
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Example 3 :  (Canopy tree)

let {𝐺𝑛}∞
𝑛=1 be a sequence of truncated binary trees with 𝑛 levels, i.e., 𝐺𝑛 is the unique binary

tree with 𝑛 levels and (2𝑛 − 1) vertices. However, the Benjamini–Schramm limit of this sequence
is not the infinite binary tree, but the canopy tree. We will not give the precise definition of the
canopy tree here, but we can offer a picture of it and some intuition. We now describe the canopy
tree as the Benjamini–Schramm limit as follows:
Let 𝑇𝐶  be the canopy tree, for each 𝑘 ∈ ℕ0, we choose a vertex 𝑥𝑘 of “height” 𝑘 in 𝑉 (𝑇𝐶) as
in the picture below (here height means the distance from the leaves). Then if we have another
vertex 𝑦𝑘 of the same height 𝑘, we can see from the picture that (𝑇𝐶 , 𝑥𝑘) and (𝑇𝐶 , 𝑦𝑘) are iso-
morphic as rooted graphs. Therefore, it is well defined to say (𝑇𝐶 , 𝑥𝑘) ∈ 𝒢•. Let (𝐺, 𝑜) be the
Benjamini–Schramm limit of the sequence {𝐺𝑛}∞

𝑛=1 as above. It can be shown that:

ℙ[(𝐺, 𝑜) ≅ (𝑇𝐶 , 𝑥𝑘)] =
1

2𝑘+1 .

Furthermore, unlike the infinite binary tree, it can be shown that it is recurrent.

Figure 1:  A picture of part of the canopy tree, which is the Benjamini–Schramm limit of the
sequence of truncated binary trees.

2.4. Statement of the main theorem
However, the Benjamini–Schramm limit does not always exist. For example, we can consider the se-
quence {𝐺𝑛} of star-shaped graphs with 𝑛 leaves emananating from the center. Thus, to get a better
result, we need to impose some restrictions.

Definition 5 :  Let 𝑀 ∈ ℕ, define 𝒢𝑀  to be the set of locally finite, connected rooted graphs (up
to isomorphism) with degrees bounded by 𝑀 , clearly we have 𝒢𝑀 ⊆ 𝒢•.

Clearly, 𝒢𝑀  is a closed subset of 𝒢•, and together with the metric 𝑑𝐵𝑆 , it is not hard to verify that 𝒢𝑀
is a complete and totally bounded space and we omit the detailed proof here. From the knowledge of
analysis, we conclude that:

Proposition 2 :  The metric space 𝒢𝑀  is compact.
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It is not had to see, by the compactness of 𝒢𝑀 , that if {𝐺𝑛}∞
𝑛=1 is a sequence of random finite graphs

with (𝐺𝑛, 𝑜𝑛) ∈ 𝒢𝑀  almost surely, 𝑀 < ∞, then there is always a subsequence that converges in the
Benjamini–Schramm sense to a random rooted graph (𝐺, 𝑜) ∈ 𝒢𝑀 .

Now, we can state the main result of Benjamini and Schramm in their seminal paper[1], which is also
the main focus of this article.

Theorem 2.4.1 :  Let 𝑀 < ∞, and let (𝐺, 𝑜) ∈ 𝒢• be a Benjamini–Schramm limit of a sequence
of rooted random finite planar graphs {𝐺𝑛}∞

𝑛=1 with degrees bounded by 𝑀  (almost surely).
Then (𝐺, 𝑜) is almost surely recurrent.

3. The proof of the main theorem
The proof we will present here basically follows the original proof by Benjamini and Schramm[1], and
also the lecture notes by Asaf Nachmias[2].

3.1. Circle packing
We alwasy want to reduce the problem to the case where it is easier to handle. Luckily, we have the
circle packing theorem, which gives us a way to approximate a finite planar graph by a circle packing.
We first give a statement of the circle packing theorem (without proof).

Theorem 3.1.1 : (Circle packing theorem) Given any connected simple planar graph 𝐺 there is a
circle packing 𝑃  in the plane whose tangency graph is (isomorphic to) 𝐺.

Moreover, we need the following ring lemma.

Lemma 3.1.2 : (Ring lemma) For every integer 𝑁 ≥ 3, there exists 𝐵 > 0, such that if 𝐶0 is a
circle or radius 𝑟0 and is completely surrounded by 𝑁  circles of radius 𝑟𝑖, 𝑖 = 1, …, 𝑁 , then 
𝑟0/𝑟𝑖 ≤ 𝐵, for every 𝑖 = 1, …, 𝑁 .

The reason that things become easier in the situation of circle packing is that we actually have a re-
currence-transience dichotomy result on the circle packing. We first define the accumulation point in
a circle packing, which is quite similar to the definition in the metric space case.

Definition 6 :  We say that a point is an accumulation point of a circle packing if in every neigh-
borhood of the point there are infinitely many circles of the packing.

And we have the following theorem.
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Theorem 3.1.3 :  If a circle packing has no accumulation point, then its tangency graph is re-
current.

We can assume without loss of generality that the circle packing has infinitely many circles, by the
uniformization theorem of (discrete) circle packing, we can conclude that the circle packing is sup-
ported either on the plane or the Poincaré disk, while the circle packing has accumulation points in
the latter case. So we only need the following theorem to complete our proof.

Theorem 3.1.4 :  Let 𝑅 be either the plane or the disk and 𝐺 the tangency graph of a circle
packing on 𝑅. Then 𝑅 is plane iff 𝐺 is recurrent.

Remark :  This theorem is quite natural from the perspective of rough isometry, but I’d like to give a
direct proof of one direction of this theorem: if 𝐺 is transient, then 𝑅 is the disk, which is the case
we need.

Proof :  We first have a criterion for the transience of 𝐺: 𝐺 is transient iff there exists a vertex 𝑥0
and a constant 𝐴, such that for all 𝜑 ∈ 𝐶(𝑅), we have 𝜑(𝑥0)

2 ≤ 𝐴 ∑(𝑥,𝑦)∈𝐸(𝐺) (𝜑(𝑥) − 𝜑(𝑦))2.
And we have a criterion for the transience of a Riemannian manifold 𝑅: 𝑅 is transient iff there
exists 𝑈 ⊆ 𝑅, 𝐾 > 0,such that for all 𝜑 ∈ 𝐶2

𝑐(𝑅), we have (∫
𝑈

𝜑)
2

≤ 𝐾 ∫
𝑅

‖∇𝜑‖2.
Now, fix the 𝑥0 in the first criterion and let 𝜑 ∈ 𝐶2

𝑐 (𝑅). For every 𝑥 ∈ 𝑉 (𝐺), let 𝑈(𝑥)
be the union of all faces of 𝐺 that meet 𝑥. We then take some 𝑓  such that 𝑓(𝑥) =

1
|𝑈(𝑥)| ∫𝑈(𝑥)

𝜑(𝑥) d𝑥, ∀𝑥 ∈ 𝑉 (𝐺). In particular, we can assume that |𝑈(𝑥0)| = 1, and we have:

∫
𝑈(𝑥0)

𝜑(𝑥) d𝑥 = 𝑓(𝑥0)≤
⎝
⎜⎛𝐴 ∑

(𝑥,𝑦)∈𝐸(𝐺)
(𝜑(𝑥) − 𝜑(𝑦))2

⎠
⎟⎞

1
2

.

Moreover, let 𝑥, 𝑦 ∈ 𝑉 (𝐺) and 𝐷𝑥,𝑦 be the smallest disk containing 𝑈(𝑥) ∪ 𝑈(𝑦). We have:

(|𝑈(𝑥)| × |𝑈(𝑦)|)(𝑓(𝑦) − 𝑓(𝑥)) = ∫
𝑈(𝑥)

∫
𝑈(𝑦)

𝜑(𝑎) − 𝜑(𝑏) d𝑎 d𝑏

≤ ∫ ∫
𝐷𝑥,𝑦×𝐷𝑥,𝑦

|𝜑(𝑎) − 𝜑(𝑏)| d𝑎 d𝑏

≤ ∫ ∫
𝐷𝑥,𝑦×𝐷𝑥,𝑦

∫
1

0
‖∇𝜑(𝑎 + 𝑡(𝑏 − 𝑎))‖ d𝑡 d𝑎 d𝑏

≤ diam(𝐷𝑥,𝑦)|𝐷𝑥,𝑦| ∫
𝐷𝑥,𝑦

‖∇𝜑(𝑣)‖ d𝑣.

By the ring lemma, |𝑈(𝑥)|, |𝑈(𝑦)|, |𝐷𝑥,𝑦| are all within constant factor, so we have the following
inequality:

(𝑓(𝑥) − 𝑓(𝑦))2 ≤ 𝐴′ 1
|𝐷𝑥,𝑦|⎝

⎜⎛∫
𝐷𝑥,𝑦

‖∇𝜑(𝑣)‖ d𝑣
⎠
⎟⎞

2

≤ 𝐴′ ∫
𝐷𝑥,𝑦

‖∇𝜑(𝑣)‖ d𝑣
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for some contant 𝐴′. Combining theses inequalities, we have:

(∫
𝑈(𝑥0)

𝜑(𝑥) d𝑥)
2

≤ 𝐴 ∑
(𝑥,𝑦)∈𝐸(𝐺)

(𝜑(𝑥) − 𝜑(𝑦))2 ≤ 𝐾 ∫
𝑅

‖∇𝜑(𝑣)‖ d𝑣.

While the last inequality also comes from the ring lemma. By the second criterion, 𝑅 is transient.
Since the disk is transient and the plane is recurrent, we conclude that the disk is the only pos-
sibility. □

3.2. The triangulation case and the main theorem
And we have the theorem holds in the triangulation case.

Proposition 3 : (The triangulation case) Let 𝑀 < ∞, and let (𝑇 , 𝑜) be a Benjamini-Schramm
limit of a sequence of rooted random finite triangulations of the sphere {𝑇𝑗}

∞
𝑗=1

 with degrees
bounded by 𝑀  (almost surely). Then (𝑇 , 𝑜) is almost surely recurrent.

Proof :  Assume that 𝑇  is a.s an infinite graph. Let 𝑃 𝑗 be the circle packing of 𝑇𝑗, and 𝑜𝑗 be the
random root of 𝑇𝑗. Without loss of generality, we can assume that 𝑃 𝑗

𝑜𝑗
, the disk corresponding

to the root 𝑜𝑗, is the unit disk 𝐵(0, 1). We want to find an appropriate limit of {𝑃 𝑗}, a circle
packing 𝑃  with tangency graph 𝑇 .

There is a unique triangle 𝑡𝑗 in 𝑇𝑗 whose vertices correspond to the three disks of 𝑃 𝑗 which
intersect the unbounded part in ℝ2 ∖ 𝑃 𝑗. And for vertex 𝑣 ∈ 𝑉 (𝑇𝑗) ∖ 𝑡𝑗, the corresponding cir-
cle is completely surrounded by other circles, Since the vertex degree is bounded by 𝑀 , we can
apply Lemma 3.1.2 to show that: for any circle with (combinatorial) distance at most 𝑑 from 
𝑜𝑗, provided that the distance between 𝑜𝑗 and 𝑡𝑗 is larger than 𝑑, there exists a constant 𝑐 =
𝑐(𝑑, 𝑀), such that its radius is at most 𝑐. Since |𝑉𝑗| → ∞ as 𝑗 → ∞ and the vertex degree is
bounded, when 𝑑 is fixed, we can always suppose that the 𝑜𝑗 and its surrounding circles with
distance at most 𝑑 are far away from 𝑡𝑗. And we conclude that: there exists a constant 𝑐 = 𝑐(𝑑),
such that for all circles with distance at most 𝑑 from 𝑜𝑗, their radii are in [1/𝑐, 𝑐].

By compactness and passing to a subsequence, we can assume that there is a limit random circle
packing 𝑃  with tangency graph 𝑇 . Now, we know from Theorem 3.1.3 that if 𝑃  has no accumu-
lation point, then 𝑇  is recurrent. Actually, it will also be fine if 𝑃  has only one accumulation
point. Let 𝑝 be this accumulation point, let 𝐺1 be the subgraph of 𝑇  spanned by vertices in 
𝐵(𝑝, 1), 𝐺2 be the subgraph of 𝑇  spanned by vertices in the complement of 𝐵(𝑝, 1), since 𝐺2 is
recurrent and the bouondary separating 𝐺1 and 𝐺2 in 𝑇  is finite, we only need to show that 𝐺1
is recurrent. In this situation, the accumulation point 𝑝 is actually not so important, since we can
alwasy invert in the circle to make 𝑝 go to infinity, then it is not an accumulation point anymore,
so 𝐺1 is also recurrent. Thus, we only need to show the following fact to complete our proof.

Proposition 4 :  With probability 1, there is at most one accumulation point in ℝ2 of the
circle packing 𝑃 .
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However, this proposition is not so easy to prove, we will need some technical lemmas to prove
it, the next section will be devoted to the proof of this proposition. Now, suppose that this propo-
sition is true, then we can conclude that 𝑇  is recurrent, which completes the proof. □

We are now ready to prove the main theorem.

Proof :  (of Theorem 2.4.1)

With the help of Proposition 3, we only need to show that all case can be reduced to the trian-
gulation case, which can be done by the following lemma.

Lemma 3.2.1 :  Let {𝐺𝑛} as in the statement of Theorem 2.4.1. Then there is a constant 
𝑐 (which only depends on 𝑀 ), such that for all 𝑗 = 1, 2, …, there exists a triangulation 𝑇𝑗
of the sphere with degrees bounded by 𝑐𝑀 , which contains a subgraph isomorphic to 𝐺𝑗,
and such that |𝑉 (𝑇𝑗)| ≤ 𝑐|𝑉 (𝐺𝑗)|.

Proof :  Let 𝑓  be a face of 𝐺, first suppose that there is no edges between non-consecutive
vertices of 𝑓 , then we can use the zig-zag construction to get a triangulation (see the left
of Figure 2). If there are edges between non-consecutive vertices of 𝑓 , then we can add a
cycle with the same number of vertices in the interior of 𝑓  and connect it in a similar zig-
zag fashion to get a triangulation (see the right of Figure 2).

Figure 2: The zig-zag construction picture from [2]

In both cases, for each vertex in each face, there are at most two edges added, so the maxi-
mal degree of resulting graph is at most 3𝑀 , and the number of vertices in this new graph
is at most 𝑀  times the number of vertices in the original graph, which completes the proof.
□

By Proposition 3, a subsequential limit of {(𝑇𝑗)} is almost surely recurrent. Let 𝑜𝑗 be a vertex
chosen uniformly form 𝑉 (𝑇𝑗), we have ℙ(𝑜𝑗 ∈ 𝑉 (𝐺𝑗)) ≥ 1

𝑐 . By Rayleigh’s monotonicity prin-
ciple, we conclude that 𝐺 is almost surely recurrent.

□

3.3. The magic lemma and the proof of Proposition 4
To prove the main theorem, we need to do some preparation.
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Definition 7 :
1. Suppose that 𝐶 ⊆ ℝ2 is finite. For each 𝑤 ∈ 𝐶 , define the isolation radius of 𝑤 in 𝐶 as:

𝜌𝑤 = min{|𝑣 − 𝑤| : 𝑣 ∈ 𝐶 \ {𝑤}}.
2. Given 𝛿 ∈ (0, 1), 𝑠 ≥ 2 and 𝑤 ∈ 𝐶 , we say that 𝑤 is (𝛿, 𝑠)-supported in 𝐶 if:

inf
𝑝∈ℝ2

|𝐶 ∩ 𝐵(𝑤, 𝛿−1𝜌𝑤) \ 𝐵(𝑝, 𝛿𝜌𝑤)| ≥ 𝑠.

In other word, 𝑤 is (𝛿, 𝑠)-supported if in the disk of radius 𝛿−1𝜌𝑤 around 𝑤 there are at least 𝑠
points of 𝐶 outside any given disk of radius 𝛿𝜌𝑤.

The proof of Theorem 2.4.1 is based on the following lemma, which is called the magic lemma.

Lemma 3.2.2 :  There exists 𝐴 > 0 such that for every 𝛿 ∈ (0, 1
2), every finite 𝐶 ⊆ ℝ2 and every

𝑠 ≥ 2, the number of (𝛿, 𝑠)-supported points in 𝐶 is at most

𝐴|𝐶|𝛿−2 ln(𝛿−1)
𝑠

.

Proof :  The proof of the magic lemma is a little bit technical, and we will do this step by step.

First, let 𝑘 ≥ 3 be an integer. Let 𝔊0 be a tiling of ℝ2 by 1 × 1 squares, rooted at some point 𝑝 ∈
ℝ2, and for every 𝑛 ∈ ℤ, let 𝔊𝑛 be the tiling of ℝ2 by 𝑘𝑛 × 𝑘𝑛 squares, such that each square in
𝔊𝑛 is divided into 𝑘2 squares in 𝔊𝑛−1. Without loss of generality, we may choose 𝑝 appropriately
so that none of the points of 𝐶 lie on the edges of the squares in 𝔊0.

We say that a square 𝑆 ∈ 𝔊𝑛 is 𝑠-supported if for every smaller 𝑆′ ∈ 𝔊𝑛−1, we have that

|𝐶 ∩ (𝑆 \ 𝑆′)| ≥ 𝑠.

Actually, we will see that the number of such squares is bounded.

Proposition 5 :  For any 𝑠 ≥ 2, the total number of 𝑠-supported squares in 𝔊 = ∪𝑛∈ℤ 𝔊𝑛,
is at most 2|𝐶|/𝑠.

Proof :  We define a “flow” on 𝔊, 𝑓 : 𝔊 × 𝔊 → ℝ, as follows:

𝑓(𝑆′, 𝑆) =

⎩{
{⎨
{{
⎧min(𝑠

2 , |𝐶 ∩ 𝑆′|) , if 𝑆′ ⊆ 𝑆, 𝑆′ ∈ 𝔊𝑛, 𝑆 ∈ 𝔊𝑛+1;
−𝑓(𝑆, 𝑆′) , if 𝑆 ⊆ 𝑆′, 𝑆 ∈ 𝔊𝑛, 𝑆′ ∈ 𝔊𝑛+1;
0 , otherwise.

We can have three observations:
1. ∑

𝑆′∈𝔊𝑏

∑
𝑆∈𝔊𝑏+1

𝑓(𝑆′, 𝑆) ≥ 0.

2. ∑
𝑆′∈𝔊

𝑓(𝑆′, 𝑆) ≥ 0, ∀𝑆 ∈ 𝔊.
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This is because if there exists some 𝑆′ such that 𝑓(𝑆′, 𝑆) = 𝑠/2, then 
∑𝑆′∈𝔊,𝑓(𝑆′,𝑆)>0 𝑓(𝑆′, 𝑆) ≥ 𝑠/2 = ∑𝑆′∈𝔊,𝑓(𝑆′,𝑆)<0 𝑓(𝑆′, 𝑆). If none of the 𝑆′ satisfies
this, then ∑𝑆′∈𝔊 𝑓(𝑆′, 𝑆) ≥ 0 automatically.

3. If 𝑆 is a 𝑠-supported square, then

∑
𝑆′∈𝔊

𝑓(𝑆′, 𝑆) ≥
𝑠
2
.

We only need to show that ∑𝑆′⊊𝑆 𝑓(𝑆′, 𝑆) ≥ 𝑠. This is because if there are at least 
2 squares 𝑆′ ⊊ 𝑆 such that 𝑓(𝑆′, 𝑆) = 𝑠/2, then the above inequality automatically
holds true. If the number is at most 1, then we can directly apply the definition of 𝑠-
supported to get this lower bound.

Next, we choose 𝑎 ∈ ℤ to be small enough, such that no squares in 𝔊𝑎 contains more than
2 points in 𝐶 . Since 𝑠 ≥ 2, there are no 𝑠-supported squares in ⋃𝑛≤𝑎 𝔊𝑛, and we have:

∑
𝑆′∈𝔊𝑎

∑
𝑆∈𝔊𝑎+1

𝑓(𝑆′, 𝑆) = |𝐶|.

Together with the observations, we have:

∑
𝑏

𝑛=𝑎+1
∑

𝑆∈𝔊𝑛

∑
𝑆′∈𝔊

𝑓(𝑆′, 𝑆) = ∑
𝑏

𝑛=𝑎+1
∑

𝑆∈𝔊𝑛⎝
⎜⎛ ∑

𝑆′∈𝔊𝑛−1

𝑓(𝑆′, 𝑆) + ∑
𝑆′∈𝔊𝑛+1

𝑓(𝑆′, 𝑆)
⎠
⎟⎞

= ∑
𝑆′∈𝔊𝑎

∑
𝑆∈𝔊𝑎+1

𝑓(𝑆′, 𝑆) + ∑
𝑆′∈𝔊𝑏+1

∑
𝑆∈𝔊𝑏

𝑓(𝑆′, 𝑆)

≤ |𝐶|

Now, let 𝑏 → +∞, using the observations above, we know that the number of 𝑠-supported
squares is at most 2|𝐶|/𝑠. □

However, it still needs some work to see that the number of (𝛿, 𝑠)-supported points is also
bounded.

Let 𝑘 ≔ ⌈20𝛿−2⌉, 𝛽 ∼ Unif([0, ln(𝑘)]). Let 𝔊0 be a tiling with side lenght 𝑒𝛽 that bases at the
origin, i.e.,

𝔊0 = {𝑒𝛽([𝑥, 𝑥 + 1] × [𝑦, 𝑦 + 1]) : 𝑥, 𝑦 ∈ ℤ}.

Then the squares in 𝔊𝑛 have side length 𝑘𝑛+1𝑒𝛽. Suppose we have the tiling for 𝔊𝑛, we can
define the tiling for 𝔊𝑛+1 by choosing base uniformly at one of the 𝑘2 squares in 𝔊𝑛. Since
dilating 𝐶 will not affect our expected conclusion, we may assume that 𝜌𝑤 ≥ 𝑘 for every 𝑤 ∈ 𝐶 .

Next, we want to transform the statement in Proposition 5, which is about squares, to the state-
ment in Lemma 3.2.2, which is about circle. To do this, we first introduce the following definition.

Definition 8 :  A point 𝑤 ∈ 𝐶 is called a city in a square 𝑆 ∈ 𝔊, if:
1. the side length of 𝑆 is in the range [4𝛿−1𝜌𝑤, 5𝛿−1𝜌𝑤];
2. the distance from 𝑤 to the center of 𝑆 is at most 𝛿−1𝜌𝑤.
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We can see from the following proposition that, in some sense, a (𝛿, 𝑠)-supported city 𝑤 ∈ 𝐶
represents a 𝑠-supported square 𝑆 ∈ 𝔊.

Proposition 6 :  If 𝑤 ∈ 𝐶 is a (𝛿, 𝑠)-supported city in 𝑆 ∈ 𝔊𝑛, then 𝑆 is 𝑠-supported.

Proof :  First we have 𝐵(𝑤, 𝛿−1𝜌2) ⊆ 𝑆. Moreover, any little square 𝑆′ ∈ 𝔊𝑛−1 with 𝑆′ ⊆
𝑆 has side length at most 𝛿2

20 × 5𝜌𝑤
𝛿 = 𝛿𝜌𝑤

4 , and is contained in a disk of radius 𝛿𝜌𝑤. Thus,
for every such 𝑆′, there exists a point 𝑝 such that 𝑆′ ⊆ 𝐵(𝑝, 𝛿𝜌𝑤). So we have:

|𝐶 ∩ (𝑆 ∖ 𝑆′)| ≥ |𝐶 ∩ (𝐵(𝑤, 𝛿−1𝜌𝑤) ∖ 𝐵(𝑝, 𝛿𝜌𝑤))| ≥ 𝑠,

which holds for every 𝑆′ ∈ 𝔊𝑛−1 with 𝑆′ ⊆ 𝑆. □

We only need to estimate the number of cities now.

Proposition 7 :  The probability that any given 𝑤 ∈ 𝐶 is a city is 𝑂(ln−1(𝛿−1)).

Proof :  We can see from the definition of a city that we have the following conditions:
1. There exists 𝑛 ∈ ℤ such that 𝑘𝑛𝑒𝛽 ∈ [4𝛿−1𝜌𝑤, 5𝛿−1𝜌𝑤], i.e., 𝛽 + 𝑛 ln 𝑘 ∈

[ln(𝛿−1𝜌𝑤) + ln 4, ln(𝛿−1𝜌𝑤 + ln 5)]. Since 𝛽 ∼ Unif([0, ln 𝑘]), easy computation
shows that the probability is about ( ln(5

4)
ln(𝑘) ) = 𝑂(ln−1(𝛿−1)).

2. The second condition will not affect our desired conclusion, since we have a positive
probability to make 𝑤 close to the center of 𝑆 by choosing the base of 𝔊𝑛 over 𝔊𝑛−1,
which is independent of 𝛿 and 𝛽.

□

Now let 𝑁  be the number of (𝛿, 𝑠)-supported points in 𝐶 , then the expected number of (𝛿, 𝑠)-
supported cities is 𝑐𝑁 ln−1(𝛿−1), where 𝑐 is a constant independent of 𝑁  and 𝛿. Also note that
given a square 𝑆, the number of cities in 𝑆 is at most 𝑐′𝛿−2. By Proposition 6, we have that the
expected number of 𝑠-supported squares is at least 𝑐

𝑐′ 𝑁𝛿2 ln−1(𝛿−1), then by the estimation in
Proposition 5, we have that:

𝑁 ≤
𝐴|𝐶|𝛿−2 ln(𝛿−1)

𝑠
,

completing the proof. □

Now we turn to prove Proposition 4, which is the last step to complete the proof of the main theorem.

Proof :  (of Proposition 4) Without loss of generality, we may assume that for every 𝑗 ∈ ℕ, the
center of the disk corresponding to the root 𝑜𝑗 is the origin 0 and has 𝜌𝑜𝑗

= 1 in the set 𝐶𝑗

consisting of the centers of the disks of the circle packing 𝑃 𝑗.
Now suppose that with positive probability, there are at least two accumulation points in the
circle packing 𝑃 . Then there exists 𝛿 ∈ (0, 1) small enough and 𝜀 > 0, such that with probability
at least 𝜀, there are two accumulation points 𝑝1, 𝑝2 ∈ ℝ2 which is contained in 𝐵(0, 1/𝛿) and 
|𝑝1 − 𝑝2| ≥ 3𝛿.
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When such two points exist, let 𝑠 be large enough, there are infinitely many 𝑗 such that 𝑜𝑗 is 
(𝛿, 𝑠)-supported in 𝐶𝑗, since the little circle 𝐵(𝑝, 𝛿) can cover only one of the accumulation
points.
Since 𝑜𝑗 is chosen uniformly, it means that a proportion of 𝐶𝑗 is always (𝛿, 𝑠)-supported for 𝑠
large enough. However, by the magic lemma, the number of (𝛿, 𝑠)-supported points is at most 
𝐾|𝐶𝑗|𝛿−2 ln(𝛿−1)

𝑠 , which is a contradiction. □

4. Some remarks and explanations about the proof
As we have seen, the proof of the main theorem is quite technical and really takes some dirty work,
so I’d like to give some remarks and explanations about the ideas behind the proof. I think the most
important parts in the proof are the idea of using circle packing, and the magic lemma, so I will focus
on these two parts.

4.1. Why we need circle packing
I think that the meaning of using circle packing is to find a canonical way to present a graph, which
is given by Theorem 3.1.1. In this way, we can take advantage of the properties of the circle packing
and better understand the structure of the graph. For example, we can easily see the quasi–isometry
structure behind the graph, thus we can reduce the problem to the recurrence–transience dichotomy
of the Riemannn surfaces, which is a well–known result.

(P.S. And this might be the part in this article that is most relevant to our courses, which is really about
the random walks and recurrence.)

4.2. Where does the magic lemma come from
The magic lemma, which deserves its name, is the most technical part in the proof. To understand
where it comes from, we first need to examine the main theorem Theorem 2.4.1 again.
The main theorem actually says that when you have finite graphs (with bounded degree) and take lim-
its with respect to the uniformly chosen roots. Since taking uniform roots is like a kind of “averaging”
process, we expect the resulting limit to have some nice and uniform properties, then we have seen
that this limit is actually almost surely recurrent.
So the problem in proving the theorem is to show how nice the limit is, or in other words, how not
bad the limit is. The most bad points in the limit are the accumulation points, which is not so easy to
analyze. So we turn our attention to points that are bad but not so bad, which are the (𝛿, 𝑠)-supported
points. So here comes the magic lemma, which says that the number of (𝛿, 𝑠)-supported points is not
so much, and this is the key to show that the limit is nice enough.

The proof of the magic lemma also needs some explanation. The definition of (𝛿, 𝑠)-supported points
is a little difficult to work directly with, so we need to find a way to transform it to a more manageable
form, which is the reason why we introduce the concept of 𝑠-supported squares and cities, the squares
are much easier to handle than the disks. Moreover, we have defined flows to help us to estimate the
number of 𝑠-supported squares, and we can see that the flow is a very powerful tool in this proof.
Recall what 𝑠-supported squares mean, it means that it actually contains a lot of points of 𝐶 , and the
way of containing these points is not so centered at a certain small square, and we cab use the flow to
describe this property.
More specifically, let me explain why we need the term min(𝑠

2 , |𝐶 ∩ 𝑆′|) in the definition of flow 𝑓 .
The idea is that we want to control the effect brought by the squares which contain a lot of points of 
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𝐶 , and the term 𝑠/2 cannot be chosen too big or too small (otherwise we lose the information of the
term min and will not get the desired inequality), so 𝑠/2 is a moderate choice (but not the only choice,
for example, take 𝑠/3 will also work).

5. Conclusion and further reading
In this article, we have surveyed the concept of Benjamini–Schramm convergence and the main the-
orem introduced in [1] , which says that the Benjamini–Schramm limit of a sequence of finite graphs
with bounded degrees is almost surely recurrent. We have also given a detailed proof of the main the-
orem, which is based on the [1] and [2, Chapter 5].

Furthermore, the bounded degree assumption can be relaxed to the assumption that the degree of the
root has an exponential tail [3], which says that the unbounded part can be controlled by an expo-
nential function, i.e., ℙ(deg(𝜌) ≥ 𝑘) ≤ 𝐶𝑒−𝛽𝑘 for some positive constants 𝐶 and 𝛽. As a corollary,
this implies that the uniform infinite planar triangulation and quadrangulation (UIPT and UIPQ) are
almost surely recurrent, which is obtained by taking the limit of a uniform random triangulation (or
quadrangulation) on 𝑛 vertices.
Moreover, let 𝐺 be a finite graph and consider the simple random walk (𝑋𝑡)𝑡≥0 on it, where 𝑋0 is a
uniform random vertex of 𝐺. Let 𝜙(𝑇 , 𝐺) be the probability that 𝑋𝑇 ≠ 𝑋0 for all 𝑡 = 1, 2, …, 𝑇 , i.e,
the probability that the simple random walk avoids the starting point for the first 𝑇  steps. We can then
define for 𝐷 ≥ 1 that:

𝜙𝐷(𝑇 ) = sup{𝜙(𝑇 , 𝐺) : 𝐺 is planar with degrees bounded by D}.

The main theorem (Theorem 2.4.1) is equivalent to the statement that 𝜙𝐷(𝑇 ) → 0 as 𝑇 → 0 for any
fixed 𝐷. A quite natural question is that what is the rate of decay of this funcion [1, Problem 1.3]. This
question was also answered in [3], which says that for any fixed 𝐷 and 𝑇 ≥ 2, 𝜙𝐷(𝑇 ) ≤ 𝐶/ log(𝑇 )
for a constant 𝐶 .
However, these results involves much more techniques and detailed analysis, so I choose not to include
it in this article. The interested readers can refer to [2, Chapter 6] and the original paper [3].
There are also some connections between this topic and other theories, such as the theory of SLE,
Liouville quantum gravity and boundary theory. We again omit these topics in this article, but the
interested readers can refer to [2, Chapter 8].
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