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In this seminar, we are going to give a talk on “Rigidity of mapping class group actions on
𝑆1” [1]. And my task is to go through Dehn-Nielsen-Baer theorem and some notions about
semiconjugacy, which aims at providing some background knowledge for the main theorem in
this paper

1. The Dehn-Nielsen-Baer theorem
Remark :  We are mainly follow the expositions from [2, Chapter 8].

The Dehn-Nielsen-Baer theorem is a fundamental result in the theory of mapping class groups,
it relates a topological object, the mapping class group, to an algebraic object, the outer auto-
morphism group of the fundamental group of a surface. Specifically, it says that Mod(𝑆𝑔) is
isomorphic to an index two subgroup of Out(𝜋1(𝑆𝑔)).

We first introduce some basic concepts.

1.1. Preliminaries

Definition 1.1.1 :  Let 𝑆 be a surface without boundary, the extended mapping class
group of 𝑆, denoted by Mod±(𝑆), is the group of isotopy classes of homeomorphisms of
𝑆, including the orientation-reversing ones.

And we have the following split short exact sequence:

1 → Mod(𝑆) → Mod±(𝑆) → ℤ/2ℤ → 1.

Example :  (Cf. [2, Chapter 2] for more details)
1. Mod±(𝑆2) = ℤ/2ℤ.
2. Mod(𝑇 2) = SL(2, ℤ), and Mod±(𝑇 2) = GL(2, ℤ).
3. Mod(𝑆0,3) = Σ3 × ℤ/2ℤ.

Definition 1.1.2 :  For a group 𝐺, let Aut(𝐺) denote the group of group automorphisms of
𝐺, and Inn(𝐺) denote the group of inner automorphisms of 𝐺. Then the outer automor-
phism group of 𝐺 is defined as Out(𝐺) = Aut(𝐺)/ Inn(𝐺).
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Proposition 1.1.1 :  (Cf. [2, Theorem 2.5] or [3, Proposition 1B.9]) Let 𝑆 be a surface with
𝜒(𝑆) ≤ 0, then 𝑆 is a 𝐾(𝜋1(𝑆), 1) space. We have the following bijective correspondence:

{Free homotopy classes of maps 𝑆 → 𝑆}

↕

{Conjugacy classes of homomorphisms 𝜋1(𝑆) → 𝜋1(𝑆)}.

If 𝜙 : 𝑆 → 𝑆 is a homeomorphism, then the induced homomorphism 𝜙∗ : 𝜋1(𝑆) → 𝜋1(𝑆) is an
automorphism of 𝜋1(𝑆). Then we have an well-defined map by the above correspondence:

𝜎 : Mod±(𝑆) → Out(𝜋1(𝑆)).

It is not hard to see that 𝜎 is injective, and we have the following theorem.

Theorem 1.1.1 :  (Dehn-Nielsen-Baer Theorem) Let 𝑔 ≥ 1. The map

𝜎 : Mod±(𝑆𝑔) → Out(𝜋1(𝑆𝑔))

is an isomorphism.

Remark :  In [2], the main proof of this theorem uses quasi-isometry methods [2, Section
8.2], but this proof is relatively complex. Due to time constraints in the seminar, we will
use an alternative proof method using pants decomposition, following the approach in [2,
Section 8.3].

Note that in the following proof, we need to assume 𝑔 ≥ 2, but this assumption is harmless,
since when 𝑔 = 1, we already have the fact that Mod±(𝑇 2) = GL(2, ℤ)

1.2. Proof of the Dehn-Nielsen-Baer theorem: the pants decomposition
approach

Let 𝑆 be a surface with 𝜒(𝑆) < 0. Since 𝑆 is a 𝐾(𝜋1(𝑆), 1) space, every outer automorphism of
𝜋1(𝑆) is induced by some map 𝑆 → 𝑆. Since 𝜋𝑖(𝑆) = 0 for 𝑖 > 1, this self map actually induces
isomorphism on all homotopy groups, and hence is a homotopy equivalence by the Whitehead
theorem(cf. [3, Theorem 4.5]).

Thus, for the surjectivity part of Theorem 1.1.1, it suffices to show that every homotopy equiv-
alence of 𝑆 is homotopic to a homeomorphism.
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Theorem 1.2.1 :  If 𝑔 ≥ 2, then every homotopy equivalence 𝜙 : 𝑆𝑔 → 𝑆𝑔 is homotopic
to a homeomorphism.

The remaining part of this subsection is to prove Theorem 1.2.1. We will first introduce the
concept of pants decomposition.

Definition 1.2.1 :  A pair of pants is a compact surface of genus 0 with 3 boundary
components. Let 𝑆 be a compact surface with 𝜒(𝑆) < 0. A pants decomposition of 𝑆 is
a collection of pairwise disjoint simple closed curves on 𝑆 such that 𝑆 minus the curves
is a disjoint union of pairs of pants.

Remark :  Equvilantly, a pants decomposition is a maximal collection of disjoint, essential
simple closed curves on 𝑆 such that no two of them are isotopic. It is not hard to see that
these two definitions are equvivalent.

A pair of pants has Euler characteristic −1. Since cutting a surface along a simple closed curve
preserves the Euler characteristic, we have the following lemma.

Lemma 1.2.1 :
1. A pants decomposition of 𝑆 cuts 𝑆 into −𝜒(𝑆) pairs of pants.
2. A pants decomposition of 𝑆 has −3𝜒(𝑆)−𝑏

2 = 3𝑔 + 𝑏 − 3 curves.
3. In particular, a pants decomposition of 𝑆𝑔 has 3𝑔 − 3 curves and 2𝑔 − 2 pairs of pants.

To prove Theorem 1.2.1, we need the following lemma.

Lemma 1.2.2 :  If 𝜑 : 𝑅 → 𝑅′ is a continuous map such that 𝜑|𝜕𝑅 is a homeomorphism,
then there is a homotopy of 𝜑 to a homeomorphism 𝑅 → 𝑅′, such that the homotopy
restricts to the identity on 𝜕𝑅.
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Figure 1:  A pair of pants cut along 𝑋 ∪ 𝜕𝑅.

Proof :  Let 𝑋 be the union of three disjoint arcs in 𝑅′, one connecting each pair of
boundary components of 𝑅′. Then 𝑅′ − (𝜕𝑅 ∪ 𝑋) is homeomorphic to a disjoint union
of two open disks (see Figure 1).

We may assume 𝜑 to be smooth, and so 𝜑−1(𝑋) is a properly embedded 1-manifold in
𝑅 with boundary lying in 𝜕𝑅. If any component of 𝜑−1(𝑋) is a closed curve, then it is
nullhomotopic since it is not homotopic to a boundary component of 𝑅, and we can modify
𝜑 to remove this component. As a result, we can assume 𝜑−1(𝑋) has exactly three arcs.

Since 𝜑|𝜕𝑅 is a homeomorphism, and it takes distinct boundary components to distinct
boundary components, we can assume that 𝜑−1(𝑋) consists of three arcs connecting the
boundary components of 𝑅. We can modify 𝜑 such that it restricts to a homeomorphism
on each component of 𝑋. By the Alexander lemma (cf.[2, Lemma 2.1]), we have that 𝜑 is
homotopic to a homeomorphism. □

With this theorem, we can prove the main theorem.

Proof : (of Theorem 1.2.1)

We modify the homotopy equivalence 𝜙 : 𝑆𝑔 → 𝑆𝑔 step by step until it is a homeomor-
phism, at each stage, the resulting map will be called 𝜙. Choose a pants decomposition 𝒫
of 𝑆𝑔 consisting of smooth simple closed curves.
1. (Transversality) We first approximate 𝜙 by a smooth map that is transverse to 𝒫, and

we can actually make it close enough to the original 𝜙. Thus we can assume this smooth
map is homotopic to the original 𝜙.
By transversality, we have 𝜙−1(𝒫) is a collection of simple closed curves. In fact, we
can assume that these curves are essential, since an inessential curve bounds a disk,
and we can homotope 𝜙 using the disk to remove the curve.
To conclude, 𝜙 is a smooth map that is transverse to 𝒫, and 𝜙−1(𝒫) is a collection of
essential simple closed curves.

2. (Homeomorphism on 𝜙−1(𝒫)) Since 𝜙∗ is an automorphism on 𝜋1(𝑆𝑔), it take
primitive conjugacy classes to primitive conjugacy classes. Thus, the restriction of 𝜙
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to any componet of 𝜙−1(𝒫) has degree ±1 as a map 𝑆1 → 𝑆1. Therefore, we can
homotope 𝜙 such that its restriction on each componet of 𝜙−1(𝒫) is a homeomorphism.

3. (Reducing components in 𝜙−1(𝒫)) Since 𝜙 is a homotopy equivalence, it has degree
±1, and it is surjective. Thus, 𝜙−1(𝒫) has at least 3𝑔 − 3 components. If it had more,
then there exists two components that are isotopic (see the equvivalent definition of
pants decomposition), and we can homotope 𝜙 through the annulus between them to
reduce the number of components.
Thus, we can assume that 𝜙−1(𝒫) has exactly 3𝑔 − 3 components.

4. (Applying Lemma 1.2.2) Now, 𝜙 maps each component of 𝑆𝑔 − 𝜙−1(𝒫) to a single
component of 𝑆𝑔 − 𝒫. For each component 𝑅 of 𝑆𝑔 − 𝜙−1(𝒫) and the corresponding
component 𝑅′ of 𝑆𝑔 − 𝒫, we can apply Lemma 1.2.2 to homotope 𝜙 on 𝑅 to a homeo-
morphism 𝑅 → 𝑅′.
After all these steps, we obtain a homeomorphism 𝜙 : 𝑆𝑔 → 𝑆𝑔.

□

1.3. Some remarks
Here we present some additional knowledge about the theorem, which will be useful in the
paper.

Recall that we have the following short exact sequence, i.e., the Birman exact sequence(cf. [2,
Theorem 4.6]):

1 ⟶ 𝜋1(𝑆𝑔) ⟶
push

Mod±(𝑆𝑔,1) ⟶
forget

Mod±(𝑆𝑔) ⟶ 1

The Dehn-Nielsen-Baer theorem can be used to relate the group Mod(𝑆𝑔) to the group
Mod(𝑆𝑔,1), wehre 𝑆𝑔,1 is a surface of genus 𝑔 ≥ 2 with one marked point, actually, we have the
following commutative diagram:

The isomorphism between Inn(𝜋1(𝑆𝑔)) and 𝜋1(𝑆𝑔) is because 𝜋1(𝑆𝑔) has trivial center, and
the isomorphism between Out(𝜋1(𝑆𝑔)) and Mod±(𝑆𝑔) is because of the Dehn-Nielsen-Baer
theorem, and the central vertical isomorphism comes from the five lemma.

2. Standard action and semiconjugacy
Here we introduce some basic concepts about standard action and semiconjugacy, mainly
following the Introduction section of [1].
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2.1. Standard action
By uniformization theorem, fixing a hyperbolic metric on 𝑆𝑔, the universal cover 𝑆𝑔 can be
identified with the hyperbolic plane ℍ2, which has a natural compactification to a closed disc.

For 𝑓 ∈ Homeo(𝑆𝑔) that fix the marked point, let 𝑥 ∈ ℍ2 be a lift of the marked point of 𝑆𝑔.
Then 𝑓  has a unique lift 𝑓 : ℍ2 → ℍ2 that fixes 𝑥. One can show that the actions of 𝑓  on ℍ2

extends to a homeomorphism on the boundary 𝑆1, which depends only on the isotopy class of
𝑓 .

Thus, this gives a well-defined homomorphism Mod±(𝑆𝑔,1) ≅ Aut(𝜋1(𝑆𝑔)) → Homeo(𝑆1),
And we call this action the standard action of Aut(𝜋1(𝑆𝑔)) on 𝑆1.

2.2. Semiconjugacy
Since ANY 𝐶0 action of an infinite group on S^1 can be modified using Denjoy trick to produce
nonconjugate examples, we need to focus on semeconjugacy, and here is the detailed definition.

Let Aut+(𝜋1(𝑆𝑔)) be subgroup of Aut(𝜋1(𝑆𝑔)) that corresponds to to Mod(𝑆𝑔,1)

Definition 2.2.1 :  Two actions 𝜌1, 𝜌2 : Γ → Homeo+(𝑆1) are said to be Semiconjugate
if there exists an equivariant, cyclic order preserving bijection from some orbit of 𝑆11

under 𝜌1 to some orbit of 𝑆1 under 𝜌2.

2.3. Main theorem of the paper [1]
And we are finally ready to state the main theorem of the paper.

Theorem 2.3.1 :  Let 𝜌 : Aut+(𝜋1(𝑆𝑔)) → Homeo+(𝑆1) be a homomorphism. Up to
reversing the orientation of the circle, we have the following.
1. If 𝑔 = 2, then 𝜌 is either conjugate to a subgroup of ℤ/10ℤ acting by rotations, or is

semiconjugate to the standard action.
2. If 𝑔 ≥ 3, then 𝜌 is either trivial or semiconjugate to the standard action.
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