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We mainly discuss the Chapter 3 in [1], since the time is limited, we may omit some details and
facts that are less important.

We first recall some notations and definitions that will be widely used in this chapter.

We identify every finite alphabet with {1, 2, …, 𝑚}. And let Σ𝑚 = {1, 2, …, 𝑚}ℤ and Σ+
𝑚 =

{1, 2, …, 𝑚}ℕ0 .

The cylinder sets:

𝐶𝑛1,…,𝑛𝑘
𝑗1,…,𝑗𝑘

= {𝜔 = (𝜔𝑙) : 𝜔𝑛𝑖
= 𝑗𝑖, 𝑖 = 1, …, 𝑘}

form a basis for the product topology of Σ𝑚 and Σ+
𝑚.

The metric:

𝑑(𝜔, 𝜔′) = 2−𝑙,  𝑙 = min{|𝑖| : 𝜔𝑖 ≠ 𝜔𝑖′}

generates this product topology.

1. Subshifts and Codes
Definition 1.1 :  A subshift is a closed subset 𝑋 ⊂ Σ𝑚 invariant under the shift 𝜎 and its
inverse. We refer to Σ𝑚 as the full m-shift.

Definition 1.2 :  Let 𝑋𝑖 ⊂ Σ𝑚𝑖
, 𝑖 = 1, 2 be two subshifts, a continuous map 𝑐 : 𝑋1 → 𝑋2

is a code if it commutes with the shifts.

A surjective code is a factor map. An injective code is called an embedding. A bijective code gives
a topological conjugacy of the subshifts and is called an isomorphism.

Definition 1.3 :  For a subshift 𝑋 ⊂ Σ𝑚, we define the 𝑊𝑛(𝑋) to be the set of words of
length n that occur in X and denote its cardinality by |𝑊𝑛(𝑋)|.

Definition 1.4 :  Let 𝑋 be a subshift, 𝑘, 𝑙 ∈ ℕ0, 𝑛 = 𝑘 + 𝑙 + 1, and let 𝛼 be a map from
𝑊𝑛(𝑋) to an alphabet 𝐴𝑚′ . The (𝑘, 𝑙) block code 𝑐𝛼 from 𝑋 toe the full shift Σ𝑚′  assigns
to a sequence 𝑥 = (𝑥𝑖) ∈ 𝑋the sequence 𝑐𝛼(𝑥) with 𝑐𝛼(𝑥)𝑖

= 𝛼(𝑥𝑖−𝑘, …, 𝑥𝑖, …, 𝑥𝑖+𝑙)

The definition above is a little abstract, so we give an example here.

Example :

Let 𝑋 = Σ2, 𝑘 = 𝑙 = 1 and 𝑛 = 3.

For (𝑖𝑗𝑘) ∈ 𝑊3(𝑋), we define 𝛼 to be:

𝛼(𝑖𝑗𝑘) = 1 if 𝑖 + 𝑗 + 𝑘 is odd;
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𝛼(𝑖𝑗𝑘) = 2 if 𝑖 + 𝑗 + 𝑘 is even.

Then compute (…1212121…) and (…111222111222…).

Any block code is a code since it is continuous and commutes with the shift. Conversely, we
have the following proposition:

Proposition 1.1 :  Every code 𝑐 : 𝑋 → 𝑌  is a block code.

Proof :  Let 𝒜 be the symbol set of 𝑌 , and define 𝑎 : 𝑋 → 𝒜 by 𝑎(𝑥) = 𝑐(𝑥)0.

Since 𝑋 is compact, 𝑎 is uniformly continuous, so there is a 𝛿 > 0 such that 𝑎(𝑥) = 𝑎(𝑥′)
whenever 𝑑(𝑥, 𝑥′) < 𝛿.

Choose 𝑘 ∈ ℕ so that 2−𝑘 < 𝛿, then 𝑎 only depends on 𝑥−𝑘, …, 𝑥0, …, 𝑥𝑘, and therefore
we can define a map 𝛼 : 𝑊2𝑘+1 → 𝒜 satisfying 𝑐(𝑥)0 = 𝛼(𝑥−𝑘, …, 𝑥0, …, 𝑥𝑘). Since c
commutes with the shift, we conclude that 𝑐 = 𝑐𝛼. □

2. Subshifts of Finite Type
The complement of a subshift 𝑋 is open and hence is a union of at most countably many
cylinders. If C is a cylinder that is a subset of 𝑋, then for any 𝑛 ∈ ℤ, 𝜎𝑛(𝐶).

That is to say, there is a countable list of forbidden words such that no sequence in 𝑋 contains
them, and each sequence in Σ𝑚 \ 𝑋 contains at least one forbidden word.

Definition 2.1 :  If this list is finite, we call 𝑋 a subshift of finite type(SFT). Furthermore,
𝑋 is a k-step SFT if it is defined by a set of words of length at most 𝑘 + 1. A 1-step SFT is
called a topological Markov chain.

We introduce a vertex shift Σ𝑣
𝐴 determined by an adjacency matrix A of zeros and ones. A vertex

shift is an example of an SFT, since the forbidden words have length 2 and are precisely those
that are not allowed by 𝐴. A sequence in Σ𝑣

𝐴 can be viewed as an infinite path in the directed
graph Γ𝐴. Furthermore, we have the following proposition, which says that:

Proposition 2.1 :  Every SFT is isomorphic to a vertex shift.

Proof :  Let X be a k-step SFT with 𝑘 > 0.

Let Γ be the directed graph whose set of vertices is 𝑊𝑘(𝑋), a vertex 𝑥1…𝑥𝑘 is connected
to a vertex 𝑥1′…𝑥𝑘′  by a directed edge if 𝑥1…𝑥𝑘𝑥𝑘′ = 𝑥1𝑥1′…𝑥𝑘′ ∈ 𝑊𝑘+1(𝑋).

Let 𝐴 be the adjacency matrix of Γ, the code 𝑐(𝑥)𝑖 = 𝑥𝑖…𝑥𝑖+𝑘−1 gives an isomorphism
from 𝑋 to Σ𝑣

𝐴 □

An alternative to describe an infinite path in the graph Γ𝐴 is edge shift:
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Definition 2.2 :  A finite directed graph Γ, possibly with multiple directed edges connect-
ing pairs of vertices, corresponds to an adjacency matrix 𝐵 whose 𝑖, 𝑗-th entry is a non-
negative integer that is the number of directed edges in Γ from the 𝑖-th vertex to the 𝑗-th
vertex.

Note that vertex shift and edge shift are isomorphic.

3. The Perron-Frobenius Theorem
In this section, we return to linear algebra and focus on a kind of matrix that is useful in the
dynamical system.

Definition 3.1 :
1. A vector or matrix all of whose coordinates are positive (non-negative) is called

positive (non-negative)
2. Let 𝐴 be a square non-negative matrix. If for any 𝑖, 𝑗 there is 𝑛 ∈ ℕ such that (𝐴𝑛)𝑖𝑗 >

0, then 𝐴 is called irreducible; otherwise 𝐴 is called reducible.
3. If some power of 𝐴 is positive, 𝐴 is called primitive.

We now record some basic properties of primitive matrices.

1. An integer non-negative square matrix 𝐴 is primitive, if and only if, the directed graph Γ𝐴
has the property that there is 𝑛 ∈ ℕ such that, for every pair of vertices 𝑢 and 𝑣, there is a
directed path from 𝑢 to 𝑣 of length 𝑛.

2. An integer non-negative square matrix 𝐴 is irreducible if and only if the directed graph Γ𝐴
has the property that, for every pair of vertices 𝑢 and 𝑣, there is a directed path from 𝑢 to 𝑣.

We now try to prove the main theorem of this chapter, I have searched for various proofs, and
I find that the proof in this book[1] is one of the simplest.

Theorem 3.1 :  Let 𝐴 be a primitive 𝑚 × 𝑚 matrix. Then 𝐴 has a positive eigenvalue 𝜆
with the following properties:
1. 𝜆 is a simple root of the characteristic polynomial of 𝐴,
2. 𝜆 has a positive eigenvector 𝑣,
3. Any other eigenvalue of 𝐴 has a modulus strictly less than 𝜆,
4. Any non-negative eigenvector of 𝐴 is a positive multiple of 𝑣.

To prove this, we need to introduce a lemma first.
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Lemma 3.1 :  Denote by int(𝑊) the interior of a set 𝑊 . Let 𝐿 : ℝ𝑘 → ℝ𝑘 be a linear
operator. and assume that there is a non-empty compact set 𝑃  such that 0 ∈ int(𝑃 ) and
𝐿𝑖(𝑃) ⊂ int(𝑃 ) for some 𝑖 > 0. Then the modulus of any eigenvalue of 𝐿 is strictly less
than 1.

Proof :  We may assume that 𝐿(𝑃) ⊂ int(𝑃 ), otherwise for any 𝑖 > 0, 𝐿𝑖(𝑃) ⊂ int(𝑃 )
is impossible. Therefore, 𝐿𝑛(𝑃) ⊂ int(𝑃 ) for any 𝑛 ∈ ℕ. The matrix 𝐿 cannot have an
eigenvalue of modulus greater than 1, otherwise, the iterates of 𝐿 would move some vector
in the open set int(𝑃 ) to ∞.

Now suppose that there is an eigenvalue 𝜎 with |𝜎| = 1. If 𝜎𝑗 = 1, then there exists a
point on 𝜕𝑃 , impossible. If 𝜎 is not a root of unity, there is a 2-dimensional subspace 𝑈  on
which 𝐿 acts as an irrational rotation and any point 𝑝 ∈ 𝜕𝑃 ∩ 𝑈  is a limit point of ∪𝑛>0
𝐿𝑛(𝑃) = 𝐿(𝑃), a contradiction. □

Now we can prove the Perron-Frobenius Theorem. Recall that a real non-negative 𝑚 × 𝑚 matrix
is stochastic if the sum of the entries in each row is 1.

Proof :  Since 𝐴 is non-negative, it induces a continuous map 𝑓  from the unit simplex 𝑆 =
{𝑥 ∈ ℝ𝑚 : Σ𝑥𝑗 = 1, 𝑥𝑗 ≥ 0, 𝑗 = 1, …, 𝑚} into itself; 𝑓(𝑥) is the radial projection of 𝐴𝑥
onto 𝑆. By the Brouwer fixed point theorem, there is a fixed point 𝑣 ∈ 𝑆 of 𝑓  , which is a
non-negative eigenvector of 𝐴 with eigenvalue 𝜆 > 0. Since some power of 𝐴 is positive,
all coordinates of 𝑣 are positive.

Let 𝑉  be the diagonal matrix that has the entries of 𝑣 on the diagonal. The matrix 𝑀 =
𝜆−1𝑉 −1𝐴𝑉  is primitive, and the column vector 1 with all entries 1 is an eigenvector of
𝑀  with eigenvalue 1, i.e., 𝑀  is a stochastic matrix.

To prove parts 1 and 3, it suffices to show that 1 is a simple root of the characteristic
polynomial of 𝑀  and that all other eigenvalues of 𝑀  have moduli strictly less than 1.
Consider the action of 𝑀  on row vectors. Since 𝑀  is stochastic and non-negative, the row
action preserves the unit simplex 𝑆. By the Brouwer fixed point theorem, there is a fixed
row vector𝑤 ∈ 𝑆, all of whose coordinates are positive. Let 𝑃 = 𝑆 − 𝑤 be the translation
of 𝑆 by −𝑤. Since for some 𝑗 > 0 all entries of 𝑀𝑗 are positive, 𝑀 𝑗(𝑃) ∈ int(𝑃 ) and,
by Lemma 3.1, the modulus of any eigenvalue of the row action of 𝑀  in the (𝑚 − 1)-
dimensional invariant subspace spanned by 𝑃  is strictly less than 1.

The last statement of the theorem follows from the fact that the codimension-one subspace
spanned by 𝑃  is 𝑀 𝑡-invariant and its intersection with the cone of non-negative vectors
in ℝ𝑛 is {0}. □
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4. Topological Entropy and the Zeta Function
of an SFT

Proposition 4.1 :  Let 𝑋 ⊂ Σ𝑚 be a subshift. Then

ℎ(𝜎 |𝑋) = lim
𝑛→∞

1
𝑛

log|𝑊𝑛(𝑋)|

Proof :  We first recall a proposition in Chapter 2, which says that:

Let (𝑋, 𝑑) be a compact metric space, and 𝑓 : 𝑋 → 𝑋 an expansive homeomorphism with
expansiveness constant 𝛿. Then ℎ(𝑓) = ℎ𝜀(𝑓) for any 𝜀 < 𝛿.

In this case, 𝛿 = 1 is an expansiveness constant, and we let 𝜀 = 1
3 . Hence ℎ(𝜎 |𝑋) =

ℎ1
3
(𝜎 |𝑋) = ℎ2

3
(𝜎 |𝑋)

We now prove the proposition.

For 𝑊𝑛+2(𝑋) with 𝑛 ∈ ℕ, we define the corresponding 𝐴𝑛+2(𝑋) as following:

For 𝑤𝑖 ∈ 𝑊𝑛(𝑋), 𝑖 = 1, 2, …, |𝑊𝑛(𝑋)|, let 𝑥𝑖 ∈ 𝑋 be a sequence with

(𝑥𝑖)−1(𝑥𝑖)0(𝑥𝑖)1…(𝑥𝑖)𝑛 = 𝑤𝑖

and

𝐴𝑛+2(𝑋) = {𝑥1, …, 𝑥|𝑊𝑛(𝑋)|}.

We now prove that 𝐴𝑛+2(𝑋) is both (𝑛, 1
3)-spanning and (𝑛, 1

3)-separated.

1. 𝐴𝑛+2(𝑋) is (𝑛, 1
3)-spanning:

For every 𝑦 ∈ 𝑋, suppose that 𝑦−1𝑦0𝑦1…𝑦𝑛 = 𝑤𝑘. Let 𝑥𝑘 ∈ 𝐴𝑛+2(𝑋), thus 𝑦𝑗 = (𝑥𝑘)𝑗
for −1 ≤ 𝑗 ≤ 𝑛.

For 0 ≤ 𝑗 ≤ 𝑛 − 1, we have:

𝜎𝑗(𝑦)
−1 𝜎𝑗(𝑦)

0 𝜎𝑗(𝑦)
1 = 𝜎𝑗(𝑥𝑘)

−1 𝜎𝑗(𝑥𝑘)
0 𝜎𝑗(𝑥𝑘)

1 .

Therefore, 𝑑𝑛(𝑥𝑘,𝑦) ≤ 1
4 < 1

3 = 𝜀

2. 𝐴𝑛+2(𝑋) is (𝑛, 1
3)-separated:

Let 𝑥, 𝑦 ∈ 𝐴𝑛+2(𝑋) be two distinct sequences: then there exists −1 ≤ 𝑗 ≤ 𝑛, such that
𝑥𝑗 ≠ 𝑦𝑗.

If 𝑗 = −1 or 0, 𝑑𝑛(𝑥,𝑦) ≥ 1
2  is obvious.

If 1 ≤ 𝑗 ≤ 𝑛, 𝑑(𝛿𝑗−1(𝑥), 𝛿𝑗−1(𝑦)) = 1
2 , also we have 𝑑𝑛(𝑥,𝑦) ≥ 1

2 .

Hence we know that 𝐴𝑛+2(𝑋) is both (𝑛, 1
3)-spanning and (𝑛, 1

3)-separated. Since
|𝐴𝑛+2(𝑋)| = |𝑊𝑛+2(𝑋)|, we have:
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span(𝑛, 1
3
, 𝜎) ≤ |𝑊𝑛+2(𝑋)| ≤ sep(𝑛, 1

3
, 𝜎)

Since

cov(𝑛, 2𝜀, 𝑓) ≤ span(𝑛, 𝜀, 𝑓) ≤ sep(𝑛, 𝜀, 𝑓) ≤ cov(𝑛, 𝜀, 𝑓),

we have

cov(𝑛, 2
3
, 𝜎) ≤ |𝑊𝑛+2(𝑋)| ≤ cov(𝑛, 1

3
, 𝜎).

We now consider 1
𝑛 log|𝑊𝑛(𝑋)| by taking limits of 𝑛, we have

lim
𝑛→∞

1
𝑛

log|𝑊𝑛(𝑋)| = ℎ1
3
(𝜎 |𝑋) = ℎ2

3
(𝜎 |𝑋) = ℎ(𝜎 |𝑋)

□

And in this section, we can compute the topological entropy of an edge shift and introduce the
zeta function, an invariant that collects combinatorial information about the periodic points.

Proposition 4.2 :  Let 𝐴 be a square non-negative integer matrix. Then the topological
entropy of the edge shift Σ𝑒

𝐴 and the vertex shift Σ𝑣
𝐴equals the logarithm of the largest

eigenvalue of A

To prove this proposition, we first introduce a lemma.

Lemma 4.1 :  Let A be a non-negative, non-zero, square matrix, 𝑆𝑛 the sum of entries of
𝐴𝑛, and 𝜆 the eigenvalue of A with the largest modulus, then:

lim
𝑛→∞

log 𝑆𝑛
𝑛

= log 𝜆

Proof :  We just sketch the proof here. For convenience, we write 𝑆𝑛(𝑀) for the sum of
entries of 𝑀𝑛.

We first suppose that |𝜆| = 1 and prove that lim𝑛→∞
log 𝑆𝑛

𝑛 = 0, when |𝜆| ≠ 1 we just
consider the matrix 1

|𝜆|𝐴.

Next, we write its canonical form 𝐽 = 𝑃−1𝐴𝑃 , the diagonal entries of 𝐽  are 𝐴’s eigen-
values. Furthermore, we take 𝑄 as the matrix transformed from 𝐽  and all diagonal entries
are 1.

Thus we can show that |𝑆𝑛(𝐽)| ≤ 𝑆𝑛(𝑄), and it is easy to see that lim𝑛→∞
log 𝑆𝑛(𝑄)

𝑛 =
0. Hence lim𝑛→∞

log 𝑆𝑛(𝐽)
𝑛 = 0. Since 𝐽𝑛 = 𝑃−1𝐴𝑛𝑃 , it is not difficult to show that

lim𝑛→∞
log 𝑆𝑛(𝐽)

𝑛 = 0. □
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We go back to the proposition.

Proof :  We only consider the edge shift, the vertex shift is similar.

By proposition 4.1, we only need to show that lim𝑛→∞
1
𝑛 log|𝑊𝑛(Σ𝐴)| = log 𝜆.

It is not hard to prove that the number of allowed words of length 𝑛 beginning with the
symbol 𝑖 and ending with 𝑗 is the 𝑖, 𝑗-th entry of 𝐴𝑛, hence |𝑊𝑛(Σ𝐴)| = 𝑆𝑛. By the lemma
above, we complete the proof. □

For a discrete dynamical system 𝑓 , we define Fix(𝑓) to be the set of fixed points of 𝑓 , and we
give a definition of the zeta function here.

Definition 4.1 :  The zeta function 𝜁𝑓(𝑧) of f is defined as:

𝜁𝑓(𝑧) = exp(Σ∞
𝑛=1|Fix(𝑓𝑛)|𝑧

𝑛

𝑛
)

To be specific, this zeta function is called the Artin Mazur zeta function. The zeta function of the
edge shift determined by an adjacency matrix 𝐴 is denoted by 𝜁𝐴. And we can show that it is
actually a rational function, and so are SFTs.

Proposition 4.3 :  𝜁𝐴(𝑧) = (det(𝐼 − 𝑧𝐴))−1

Proof :  Since log( 1
1−𝑥) = Σ∞

𝑛=1
𝑥𝑛

𝑛 , we have exp(Σ∞
𝑛=1

𝑥𝑛

𝑛 ) = 1
1−𝑥 . Moreover, since the

number of allowed words of length 𝑛 beginning with the symbol 𝑖 and ending with 𝑗 is
the 𝑖, 𝑗-th entry of 𝐴𝑛, we have

|Fix(𝜎𝑛 | Σ𝐴)| = tr(𝐴𝑛) = Σ𝜆𝜆𝑛.

Suppose that 𝐴 is a 𝑁 × 𝑁  matrix,

𝜁𝐴(𝑧) = exp(Σ∞
𝑛=1

Σ𝑛
𝜆(𝜆𝑧)

𝑛
) = Π𝜆 exp(Σ∞

𝑛=1
(𝜆𝑧)𝑛

𝑛
) = Π𝜆(1 − 𝜆𝑧)−1

= 1
𝑧𝑁 Π−1

𝜆(1
𝑧−𝜆) = (𝑧𝑛 det(1

𝑧
𝐼 − 𝐴))

−1
= (det(𝐼 − 𝑧𝐴))−1.

□

We have a generalized version of this proposition, which is too complicated to be proved here.

Theorem 4.1 :  The zeta function of a subshift 𝑋 ∈ Σ𝑚 is rational if and only if there are
matrices 𝐴 and 𝐵 such that |Fix(𝜎𝑛 |𝑋)| = tr𝐴𝑛 − tr𝐵𝑛for all 𝑛 ∈ ℕ0.
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Moreover, we have the theorem which says that the Artin–Mazur zeta function of an interval
map 𝑓  is the inverse of the kneading determinant of 𝑓 , which is relevant to Milnor-Thurston
kneading theory[2].
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